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ABSTRACT

The key issue in motion estimation and tracking an
object over a sequence of images is establishing correspon-
dence between the features of the object in the different
images of the sequence. For range image sequences, this
problem translates into finding a match between the sur-
face segments in a pair of range images of the scene. This
paper considers the problem of establishing correspon-
dences between surfaces in a sequence of range images. We
present a novel procedure for finding correspondence and
show the results on real range image sequences. A graph
search procedure forms the basis for the algorithm that
computes the correspondence between surfaces. The solu-
tion uses geometrical and topological information derived
from the scenes to direct the search procedure. Fundamen-
tal to our strategy to match features over a sequence of
range images is a hypergraph representation of the scenes.
Two scenes are modeled as hypergraphs and the hyper-
edges are matched using a sub-graph isomorphism algo-
rithm. The hierarchical representation of hypergraphs not
only reduces the search space significantly, but also facil-
itates the encoding of the topological and geometrical in-
formation. Further, we present a sub-hypergraph isomor-
phism procedure to establish the correspondences between
the surface patches and demonstrate the algorithm on dif-
ferent types of real range image sequences. We present re-
sults that show that the algorithm is robust and performs
well in presence of occlusions and incorrect segmentations.

INTRODUCTION

The key issue in motion estimation and tracking an
ohject over a sequence of images is establishing correspon-
dence between the features of the object in the different
images of the sequence. In this paper we deal with the
tracking of objects in a sequence of range images to esti-
mate the motion of the camera (range sensor) in the envi-
ronment. Range images sense the surface of the objects,
s0 it is natural to use surface segments as the features of
interest; this translates the tracking of objects into finding
a match between the surface segments in a pair of range
images of the scene. This paper considers the finding of
correspondences between surfaces in a sequence of range
images. Finding correspondence or a match between fea-
tures is not isolated to object tracking, but is also central
to other computer vision tasks including navigation, ob-
ject recognition, target tracking, and map building. We
present a novel procedure for establishing correspondence
and show the results on real range image sequences.

385

A graph search procedure forms the basis for the algo-
rithm that computes the correspondence between surfaces.
The solution uses geometrical and topological information
derived from the scenes to direct the search procedure. In
general, the input to the matching algorithm is the output
from a segmentation algorithm that partitions the image
into surface segments. The performance of the matching
depends greatly on the results of the segmentation algo-
rithms. Incorrect segmentation causes poor estimation of
the surface parameters and affects the performance of the
matching algorithm. We address this issue and obtain a
solution that is robust and able to handle occlusions of
surfaces, noise in data, and incorrect segmentation from a
segmentation algorithm. In the present implementation,
we assume that the images have planar, cylindrical and
conical surfaces; however, the procedure is general enough
to be extended to other surface classes.

The question of finding correspondences between fea-
tures has been studied extensively (see [1, 3, 4, 5]) but,
most of these approaches deal with matching a scene to a
model of the object. The fundamental difference between
model-to-scene matching and scene-to-scene matching is
that in the former, the model description of the object is
complete, and to that we match the incomplete descrip-
tion of the object obtained from the scene. However, in
the case of scene-to-scene matching, both descriptions of
the object are incomplete and we must find a match be-
tween two incomplete descriptions. By incomplete, we
mean that all the features are not present in the descrip-
tion of the object because of occlusions and sensor errors.
This difference makes it impossible to use the strategies
obtained for object recognition in the domain of object
tracking; new strategies based on the constraints of the
problem have to be designed.

Fundamental to our strategy to match features over
a sequence of range images is a hypergraph representa-
tion of the scenes, The two scenes are modeled as hyper-
graphs and the hyperedges are matched using a sub-graph
isomorphism algorithm. To reduce the complexity of the
matching task, heuristics derived from the topological and
the geometrical information available from the scene are
used to direct the search. The hierarchical representation
of hypergraphs not only reduces the search space signifi-
cantly, but also facilitates the encoding of the topological
and geometrical information. Hyperedges are formed by
grouping the surface features, which reduces the search
space. Using a priori knowledge arising out of the physi-
cal constraints of laser scanning, a fast matching algorithm
is designed.



HYPERGRAPH REPRESENTATION

Hypergraphs are generalizations of graphs. The edge
is generalized as a hyperedge, where a set of vertices forms
the hyperedge, instead of just two vertices forming the
edge. The group of vertices forming the hyperedge may
share some common property. Hypergraphs have been
used earlier in vision and robotics applications [11, 12],
but have not found widespread usefulness. We present
a new definition of the hyperedge and a novel method for
constructing the hypergraphs that makes it a powerful tool
for vision applications.

Attributed hypergraphs are a concise way of repre-
senting objects such that both quantitative and qualitative
information are encoded in the representation. Formally;

Definition 1 The Hypergraph [2] is defined as an ordered
pair H = (X, E) where X = {zy,22,+++,2,) is a finite
set of attributed vertices and E = {e1,e3,-+, ey} are the
hyperedges of the hypergraph. The set E is a family of
subsets of X (i.e. each e; is a subset of X ) such that

L. ¢ #B,i: L-+s,m

2, U:?__‘e, =X

A graph is a hypergraph whose hyperedges have cardinal-
ity of two. To each hyperedge, we associate an attribute
set that maps the vertices (belonging to the hyperedge) to
an attributed graph.

Each surface patch in the range image forms an at-
tributed vertex. The attribute values are the surface prop-
erty values. For each pair of surfaces that are connected,
an attributed arc is formed. The attributes of the arc
describe the interfacing edge and the relative geometri-
cal information between the two surfaces. Groups of the
attributed vertices (surface patches) form an hyperedge,
and with each hyperedge we associate an attributed graph
that describes the topology of the component attributed
vertices (surface patches).

The set of vertices that form the hyperedge should
represent a topologically significant feature in the graph
so that the matching task is guided by the topology of the
scene. Cliques in the graph are significant features that
are rich in information. Physically, the cliques represent
groups of surfaces that are adjacent to each other. Since
a clique provides a larger attribute set and many geomet-
rical properties, the probability of a false positive match
(between two cliques) is reduced significantly. Each clique
forms a hyperedge in the hypergraph and the attributed
graph describing the clique is the associated attribute of
the hyperedge. Figure 1 illustrates the formation of a hy-
pergraph from a scene.

The complexity of computing the cliques in a graph
is exponential, so the formation the hypergraph will be
exponential. However, the physics of the range imaging
process restricts the size of the cliques in the scenes that
we observe. It can be shown that the size of the clique
is restricted to be four [8]. Once the upper bound on the
size of the cliques is known, the complexity of computing
the cliques becomes O(n).

THE MATCHING PROCEDURE

This section presents the matching procedure used to
derive the surface correspondences in a sequence of range
images. The heart of the procedure is a directed tree search
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Figure 1: An object and its corresponding Hypergraph rep-
resentation

algorithm that tests various hypotheses and rejects the
impossible ones. Finally the interpretation that gives the
largest match is selected as the solution. Constrained tree
search algorithms have been used in many applications
[4, 5, 7). Data pairings are formed by a depth first search
of an interpretation tree. Each node of the tree repre-
sents a possible pairing. The first data (surface patch)
is taken from the first scene and paired with each of the
data in the second scene, These form the nodes in the first
level of the tree. To account for missing surface segments
due to occlusions, the data is also paired with a wild card
*. Subsequent levels of the tree correspond to pairings of
other vertices. Each branch of the tree represents a partial
matching of the scenes. The constraints are used to prune
the search tree and thus reduce the search space.

We present a variation to the constrained tree search,
in which the search is directed based on the current hy-
pothesis. The directed search, coupled with the termina-
tion conditions, further reduces the search space. The key
idea is to use the topological constraints of the scene to
determine the next most likely match, and to accept or
reject the matches based on the geometrical constraints.

The features used in the matching process are sur-
face segments. We assume that a segmentation algorithm
[9, 10] segments the range image into surface patches and
the surface parameters are computed. The interfacing
edge between the surface patches are detected and their
properties are computed. The properties of the edge seg-
ments used are (1) the edge type (straight line or curved),
(2) the edge length, and (3) the depth discontinuity. The
depth discontinuity across the edge implies that one sur-
face may be occluding (partially or completely) another
surface. The information about occlusion is also incorpo-
rated in the attribute list of the surface patches.

The constraints used are similar to the unary and bi-
nary constraints developed by Grimson and Lozano-Perez
[6]. The only unary constraint we use is the surface type
classification (planar, cylindrical, conical, etc.). Other
properties, used in model based object recognition, such
as area, perimeter, compactness, etc., are very sensitive
to occlusion, and since occlusion may occur in either of
the range images, these properties cannot be used as con-
straints. The binary constraints describe the relative prop-
erties between pairs of surface segments. The properties
we use are (1) connectivity, (2) the angle between the sur-
face patches, (3) the range of distances between the two
surface patches, (4) the range of the components of the
vector spanning the two surface patches, and (5) the prop-
erties of the interfacing edge. Each constraint is measured
and tested against a predetermined threshold. For surface



segments that have an occluding edge, the neighbors in-
formation is not complete (a neighbor may be hidden) and
the connectivity information may be inaccurate. There-
fore, for such cases only a weak match is hypothesized
which is subject to conformation or rejection based on
further evidence.

Matching between the two hypergraphs representing
the scenes is achieved by computing the match between
the component hyperedges. A match between the two hy-
peredges is hypothesized. The two hyperedges are matched
by matching the attributed graphs representing the hy-
peredges. An order of vertices is established at each stage
of the match. The order determines the branches taken
in the search tree. The order is determined by listing
the hyperedges connected to the vertices that have been
matched in current hypothesis. The matching procedure
starts by selecting the largest hyperedge I, and H; in the
two scenes. The vertex with the largest degree is selected
as the first node n; and it is matched with the corre-
sponding vertex in the second hyperedge. The unary and
the binary constraints are checked to evaluate the match
between the hyperedges. Once the hyperedge-match has
been established, the second set of hyperedges are selected.
The next hyperedge H; is the hyperedge connected to H,
at ny. A match for each of the hyperedges connected to H,
at ny is found. The search then proceeds to find matches
of hyperedges connected to H, at other vertices belonging
to H;. The procedure goes down the list of all the vertices
in the hypergraphs in the order evaluated earlier. Once a
match for a hyperedge is found that hyperedge is marked
as matched. The marked hyperedges are not considered in
the future hypotheses.

Figure 2: The depth maps of a sequence of range images.

Termination of the matching procedure occurs if the
fraction of surface patches matched exceeds a threshold.
Once a match has been determined (i.e., the search pro-
cedure has reached the leaf node of the tree), the num-
ber of positive pairings (i.e., non-wild card pairings) is
computed. If this number is less than the threshold frac-
tion then the procedure backtracks and searches other
branches. At every stage the best possible match is com-
pared with the current best match. If the best possible
match is smaller than the current match, then the search
along that branch is abandoned and the next branch is
investigated.

RESULTS

In this section we present an example of a range im-
age sequence and describe how the matching algorithm
computes the surface correspondences. The algorithm was
tried successfully on different types of range image se-
quences.
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Figure 3: The segmented range images.

Figures 2-4 illustrate the algorithm on an example.
Figure 2 shows the depth maps of two frames in the se-
quence of range images. The scenes consist of a jumble of
different kinds of objects. The camera is moved to obtain
the second frame of the sequence. The segmentation al-
gorithm of [10] was applied on the images and the results
input to the matching algorithm. The segmented results
are shown in figure 3. The first step of the algorithm
generates the attributed graph of the scene and computes
the cliques in the graph. Each clique forms a hyperedge
in the generated hypergraph. The hypergraphs generated
are shown in the figure 4. For each hyperedge the compo-
nent vertices form an attributed graph. In the figure the
arcs of the attributed graph are shown in the hyperedges.
Using the properties of the edge, interfacing two surface
segments, it is determined if two surfaces are connected, If
there exists an occluding edge between two surfaces then
the arc in the attributed graph is weak (shown in the fig-
ure 4 with dotted lines). A match based on a weak arc is
a weak match and further evidence is required to confirm
the hypothesis.

Figure 4: The generated hypergraphs of the range images.

The first hyperedge pair hypothesized to match is
{h,1,7} in the first scene matches {3,4,11}. The vertex
with the highest degree h is considered as the first vertex.
The unary constraints leave only one option i.e., (k,3) as
the first node in the interpretation tree. However, the next
two vertices ¢ and j do not match any vertex so they are
matched with the wild card =, Note that in the final match
that is obtained the pairing (h,3) is an incorrect pairing.
The algorithm backtracks and finds the correct match even
though we start with an incorrect match. We present the
first few steps to illustrate how the algorithm works. The
second hyperedge considered for match is {k, g} because it
is connected to the first hyperedge at h. Since the current
hypothesis is (h,3), the next hyperedge match considered
is between {h,g} and {3,2}. The unary constraints are
satisfied between the pair (g,2) so the binary constraints
of angle, distance and the spanning vector are tested. All
the constraints are satisfied so the match pair is accepted



in the current hypothesis. The next hyperedge considered
now is {j, k} as it is connected to the first hyperedge. The
match between {j, k} and {11,12} is tried and the pairing
(k, 11) satisfies all the constraints, but the connectivity is
not satisfied (k is not connected to h while 11 is connected
to 3). At this point we use the fact that the arc between
3 and 11 is a weak one so it can be broken and all the
constraints are satisfied.

The procedure continues till a complete mateh (i.e.,
all the vertices are accounted for) is obtained. The match
size is evaluated and if a better match can be obtained,
the procedure backiracks to improve the results. The final
matching results are:

I | b ]e]ld]|e|FlglR]|T]i]k
IN|f6] 5|8 1718|161 2|3 [ = |11
1 | m n (4] * * * * * *
IM~]12|19[15| 4 |7 [9][10[13| 14

It may be observed that in the example shown there
are many errors in segmentation (for eg. surfaces j, 7,
14, 13, etc.) and there are surfaces that get occluded
in one of the scenes (for eg. 4 and l); notwithstanding,

the algorithm performs well and the correspondences are
evaluated.

CONCLUSION

Computing motion and tracking an object over a se-
quence of range images involves establishing correspon-
dence between the features of the object in different im-
ages in the sequence. The question of finding correspon-
dence in a sequence of range images is very different from
finding correspondence between a model and an object de-
scription. The fundamental difference lies in the fact that
the model description of the object is complete, while in
case of a sequence of range images, both descriptions of
the scene are incomplete. The lack of information forces
one to impose only weak constraints and allow for larger
tolerances.

We presented a new framework and procedure to com-
pute the correspondences between surface segments in a
sequence of range images. Fundamental to our frame-
work is the hypergraph representation of the range im-
ages. The hierarchical representation of hypergraphs not
only reduces the search space significantly, but also facil-
itates the encoding of the topological and geometrical in-
formation. In addition to the topological and geometrical
information obtained from the scene we also use a priori
knowledge of the scene obtained from the physics of the
laser scanning process used to produce the range images.
Each piece of information used reduces the complexity of
the matching procedure by pruning the search space. The
solution is robust and accounts for errors in segmentation,
occlusions of surfaces, and noise in the data. By using
the topological information to guide the search procedure,
the average case complexity of the algorithm is reduced
significantly.
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