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In an infrared surveillance system in an aerospace environment
(which is tasked with the detection of remote sources thus with a
very low resolution), the cloudy sky velocity estimation should
generate a lower false alarm rate in discriminating the motion
between different moving shapes, by means of a background
velocity map. The optical flow constraint equation, based on a
Taylor expansion of the intensity function, is ofien used to estimate
the motion for each pixel. However one of the main problems we
faced with motion estimation is that we cannot have for one pixel a
complete knowledge of the real velocity because of the aperture
problem. Another kinematic estimation method is based on maiched
filter (Generalized Hough Transform (GHT)), it gives a global
velocity estimation for a set of pixels. On the one hand we obtain a
local velocity estimation for each pixel with little credibility,
because of the sensitivity to noise of the optical flow; on the other
hand, we obtain a global robust kinematic estimation identical for
all pixels. This paper aims to adapt and improve the GHT in our
lypical application in which one has 1o discern the global movement
of objects (clouds) whatever their form may be (clouds with hazy
edges or distorted shapes or even clouds that have very liule
structure), We propose an improvement of the GHT algorithm
through an image segmentation using polar constraints on spatial
gradients : one pixel, at time t, will be matched with another one at
time 1+AT, only if the direction and modulus of the gradient are
similar. This technique, which is very efficient, sharpens the peak
and improves the motion resolution. Each of these estimations is
calculated within windows belonging to the image, these windows
being selected by means of an entropy criterion. Using the property
of the aperture problem, all the pixels selected for the GHT will
have their own optical {low as a velocity component. This
kinematic vector will be computed accurately by means of the
optical flow constraint equation applied on the displaced window.
We showed that, for small displacements, the optical flow constraint
equation sharpens the results of the GHT. Thus a semi-dense
velocity field is obtained for cloud edges. A velocity map computed
on real sequences with these methods will be shown. In this way, a
kinematic parameter will allow discrimination between a target and
the cloudy background.

KEYWORDS : Motion estimation, Pattern recognition,
Generalized Hough Transform, Crosscorrelation,
Optical flow.

I) Introduction

This paper covers the detection and the estimation of cloudy
kincmatic fields. It will present the two main existing methods of
measuring the motion and the main physical limitations to a correct
measurement of the velocity, The [irst section propose a method
based on an entropy criterion that detects and localizes the image
arcas (called windows) where there is motion. The second section
will propose three methods belonging to the set of global methods :
the Fourier analysis, the crosscorrelation method and the Generalized
Hough Transform (GHT). This last one will be improved by using a
polar constraint during the matching process. Two credibility
vectors will be used in order to weigh the estimates. The
segmentation within the windows between matching pixels and
pixels that are climinated, will be presented in this section. The
third section deals with a differentia) method which gives further
velocity information for cach pel. This local method is not zble o
take into account large displacements but can give a velocity
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estimation in the gradient dircction for each pel. We will show that
this optical flow estimation can be computed after the GHT method.
The combination of the two will sharpen the velocity component
within a window. An example demonstrating the performance of
this technique will be presented.

I.1) Motion Estimation Methods

A study of the different motion estimation methods in an image
sequence quickly shows that these methods must be classified into
two major types (1) : features based methods (overall view) and
differential methods (local view).

These methods are called global methods when the velocity
estimation is a displacement mean value for a sct of pixels.
Primarely the crosscorrelationmethod is used. Global methods can
use workspace ransformations where the problem is supposed o
be simplicr to resolve. These techniques take into account the
Fourier and the Hough transform methods. The kinematic vector is
global and similar for all the pixels in the window, The method of
selection of the windows will be presented at the end of this section
(cf. 1.3). Local methods are interesting in the sense that they provide
a dense kinematic ficld of estimates : a motion measurement  for
each pixel is theoretically possible. The techniques used usually
refer to the optical flow constraint equation which links (through a
first order Taylor expansion ) the spatio-temporal derivatives of the
irradiance function to the kinematic vector, Sensitive Lo noise
because of their differential nature, these local methods have the
great advantage of not imposing any constraint on the type of
displacement to be quantified. Unfortunately, only small
displacements can be correctly estimated.

Indeed, the object of all these methods is to define an entity, which
is not in itself immedietly quantifiable, through different filters or
mathematical tools.

1.2) Aperture problem

The aperture problem is the main limitation when displacement
components are computed (2) @ because of the aperture problem we
can only locally estimate the velocity |, projected on the gradient
direction for an oriented shape, as shown on figure 1. The velocily
components parallel to the edge direction remains invisible.

In our application we have no information about the depth of or
distance between clouds. This means that some occlusion
phenomenon may occur because of relative velocity due to
perspective projection (figure 2). Morcover the velocity estimation
is a function of the azimuth angle and the direction of the wind
vector : we will not have to estimate an ego-motion over the whole
image. For this reason we propose to place small windows in our
image where there is motion. This should decrease the probability of
having an occlusion on the set of pixels on which we are woerking.
A second problem is that the clouds have hazy edges, distorted
shapes and may have very little structurz. Here we form the
hypothesis that distorsion between two images, due to the temporal
sampling rate, is unperceptible. This hypothesis will be later
verified on real image sequence.

The
an

1.3)
by

choice of working windows solved
entropy criterion

Fistly we first applied a 3x3 median filter to eliminate impulsionnal
noise without blurring the cloud edges. We detect motion through a
difference of irradiance in time, that is why we propose 1o compute
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the derivative in time as follows:

diff(x,y) = abs( f (x,y,0) - f (x,y 1+AT) )
where f represents the image sequence and AT the sampling time.
In our application we want to lead our process into regions of
greatest disturbance. Our hypothesis is based on the fact that motion
induces more disturbance than noise does in the picture oblained
using the above formula.
The main principle is to place the working windows in areas in
which temporal evolution of the irradiance is most stochastic (least
determined). The entropy factor, as defined below, is a measurement
of the mean incertitude in a stochastic set:

=l
H=- ¥ Pulog(P)
im. gl

where Pi represents the probability of pixels (with
irradiance i) appearing in the window, cach pixel being coded in m
bits. The picture is divided into four quadrants.

On each picture, we apply a recursive split algorithm that
cuts every window down into four smaller ones. At each step we
compute four new entropy criteria which are compared with the
preceding entropy values (in the father window) and with those in
the three brother windows. The largest entropy factor is always
chosen. The algorithm stops when a window smaller than 30x20
pixels appears.

The maximum entropy is obtained with equiprobability in the
histogram of diff(x,y). This sets the upper limit of the entropy
criterion:

0< H< log(255).
This entropy technique gives good results for real sequences.
We observed that our windows were created in areas of greatest
disturbance (figure 3).

IT) Global Methods
This section shows three global methods.

II.1) The Fourier transform method

The Fourier transform method generates the motion information by
computing the phase difference between two time samples (only in
the case of translatory motion (9)). However, not only does this
method entail a very long computing time when applied to a
bidimensional signal, but it can only be used in the case of a
translation on a single object. In addition, the moving source
spectrum features must be known. In conclusion, there are too many
constraints for use in our application.

I1.2) The crosscorrelationmethod
The crosscorrelationmethod can be used to match the irradiance
function f(x,y,l) in time : f(x+Ax,y+Ay, H+AT) = {(x,y,) ) where
(AxAy) represents the displacement and AT is the temporal
sampling rate. The crosscorrelationcan also be calculated for two
previously binarized images (crosscorrelationon segmented images)
10 decrease processing time.
The normalized mean crosscorrelationexpression is ;

Cifd) = i i [(f(rn-ﬂ..nld,.l-aT) - pe(t-AT)) (Fmn,0) - pev))]
A =M N
A ]:A.. Ay, a.] is a spatiotemporal vector of the displacement and p(1)
represents the average intensity value of the image f at time t.
The correlation factor is also defined as:

C;TQ-;} = i.‘ i,,, [{f{m-d..nAA,.l-AT) - j.ldi-d.T)l(f(m.n.l) - p..(t))]

Chs S8 o

O1).o(1-AT)
ad  of)=E {(f(_s..t) ) ’

This last formula gives good normalized results, but the required
computation time is high because standard deviation has to be
calculated repeatedly. Crosscorrelationon previously segmented and
binarized images can be computed more quickly (boolean operations)
which improves the quality of the correlation peak.

here -1< Cdd < 1

Only translation of a single rigid object on a stationnary background
can be perfectly detected. It is therefore difficult to use this method
on windows that are 100 large, because clouds can appear and move
at different speeds and in different directions. However, this method
seems o be applicable to isolated cirrostratus or stratocumulus
clouds on blue sky background.
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I1.3) The
method
The generalized Hough transform method must be applied to
binarized pictures. It describes a mapping between points in feature
spaces and points in parameter spaces. Sklansky (3) has shown that
this transform method is equivalent to a matched filtering process
between the selected pattern at time "t" and the image at the next
time sample : "t+AT". There is also an equivalence between the
Generalized Hough transform method and template matching. Of
course, this method gives better results than the correlation
technique because we more accurately define the pattemn required in
the new picture. We obtain a cluster array (called accumulator) where
the peak position provides the estimation of the displacement
vector. We have improved the performance of the Generalized Hough
Transform method by using a polar constraint in the matching
process which sharpens the peak emergence. The mathematical
formulation of the GHT is as follows :

generalized Hough transform

Let @ and B be two spatial vectors.

Let b(B) = b(x,yp) the binarized window threshold by keeping N
pels of the larger gradient modulus (cf. 2.4).

Let h(@) = h(xg.ye) the N vectors belonging to the set of selected
points :

for each b(@) = 1, let h(x0 - X, Y0 - yp) = 1 with (x0,y0)
representing the origin of the space.

Finally, let A{&‘) = A(xq,Yo) the accumulator matrix which has
been initialized with zero values;

2

B (xp.yp)
Each cell of the matrix A has a counter and for cach pixel selected in
the binarized window, N cells are reached by the process (figure 5).
At the end, the position of the larger counter correponds to the
pattern position in the next frame.
Here a question is raised : how are the matching point of interest
defined ?
Clouds have hazy edges, distorted shapes and no internal structure,
thus it is very difficult 1o know what pixel isradiunce will be kept in
the new picture. We resolve this problem by using Sobel's eight
direction edge detector (4) and by only considering the highest
gradient modules. These are the points of interest and are used for
pattern matching. We also neglect the cloud description using string
edges which are unrealizable when describing cloud features (5).

A@ = h (Xa-Xp, Ya-yp) . blxg.yp)

11.4) Thresholding
criterion

With the two preceeding methods there is a threshold choice to do
(how many gradients with high modulus are to be kept ?). In our
application, we want to extract the clouds from the background to
obtain a binary image that can be used by the generalized Hough
transform method. This threshold choice can be heuristic (invariable)
or processed (matched in time). Some methods arc based on the
bimodal histogram search by means of iterative methods. They don't
always provide satisfactory results and processing time depends on
the distance between the bimodal histogram model and the real
histogram. Here the process consists of a binarization that preserves
the same mean value for two images, and that tries 1o have the
correlation factor between them, near to 1 (6).

N N
letPag = 3 P(x[i]) and P@Ro= 3 P(x[i])
(]
CCED
where P(x[i]) is the probability of having the intensity x[i] in the
raw image x and s is the variable threshold.
The picture is binarized with two values : y1 (if x(i) > s) and y2 (if

x() < s). yi=—28 Ps
P(as) P(Bs)
We obtain a crosscorrelationfunction which is a function of s :

A/P(as) + BYP(Bs) - Ex). (g + By)

0.0y,
where E[x] represents the average of the raw picture; oy the standard
deviation of the raw picture and oxg the standard deviation of the
binarized picture (function of s).
The high value of p provides the threshold value S, which

by a correlation

B

yo=

Poxag =



maximizes the SNR between the raw picture and the thresholded
image. This method is interesting because of its constant processing
time : we always obtain a threshold adapted value. An example
showing the performance of this technique is presented in figure 6.

11.5) Improvements and
I1.5.1) Crosscorrelation
A two component credibility vector is defined which describes the
quality of the estimation (figure 7).

« describes the quality of the resolution and is normalized between 0
and 1. In the perfect theoretical case, we obtain a Dirac's pulse and
o = 1 (infinite resolution).

credibility vector

- Cr(AnAy)
Axed Gy03
¥ ¥ Calip
t=Agd jmay-d
where max (Ci{i,j)) = Cu(AsAy)

P describes the matching process quality and is normalized between
0 and 1. In case of perfect matching, we obuain B = 1 (perfect
matching).

B= Ca(AAy)

The results, obtained directly on a real image sequence, show a low
resolution at the peak (a) of the crosscorrelation matrix for the
motion estimation, but the likelihood measurement (B) between
these pictures is excellent (o and B are often written as a
percentage). This implies that there is litle distortion between
clouds from one sample 1o the next. We can improve the resolution
with binarized images but the likelihood decreases,

11.5.2) Generalized Hough Transform

We have defined a credibility vector with two components which
describes the quality of the cluster array estimation. As before, these
criteria have been normalized so that comparisons may be made.

The definition of @ is ;

v _AA)
Ax+d M3
T X AG)
ImAed iy
where max(A(ij)) = A (4,4,).
B=A (AxAy)/N

where N stands for number of points to maich.

B describes the set of points which group together to create the high
array cluster value, in a 7x7 pixel neighborhood around the peak.

o and B are complementary thus it is not necessary to obtain a very
good resolution (where o tends toward 100% ) with a low B value (B
represents the number of points actually matching). Some resulls
showing this are in figure 8. We propose a new method for
improving the peak emergence using a polar constraint. The high
gradients are classified into 6 groups of intensity and 6 groups of
direction. Two points, each belonging 1o two successive images
cannot be matched if they don't belong to the same intensity and
direction groups. This, the cluster array becomes more robust as
shown in figure 9. Different numbers of polar groups have been
tested and only the ones which improves the resolution without
markedly diminishing the B criterion were kept ( In our test on real
sequence, we have only considered results for which B remains
higher than 20 %).

11.6) Conclusion )

We proposed and tested a new approach o match feature points by
means of a polar constraint on the generalized Hough transform
method. We compared the results using the crosscorrelation method
and proposed two normalized credibility factors. We show now that
optical flow techniques are actually tested to define accqramly and
more locally the velocity components in order (o obtain a dense
kinematic field estimation. This module will still allow a fairly
rough estimate of cloud motions. The translation aspect is now
satisfactorily calculated and its other aspects (homothetic,
rotationnal motions or others) will be studied more accurately by
means of optical flow.
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I11°) Optical flow estimator

Based on a first Taylor expansion of the intensity function, the
optical flow constraint equation links the kinematic parameter to the
spatio-temporal gradient as follows (7X8):

f,)i +fyy +f; = 0

where (i’.. fy ﬁ} are the first derivatives of the the intensity function
in space and time,
and

- Ay

X ==
AT
AT is the temporal sampling rate.
Because of the aperture, the preceding equation has a unique solution
vector that satisfy :

and y=A—’
AT

fry-fy%x =0
Thus, the optical flow coefficients at pixel i are defined as :
X; = _fliﬁ;__ i = _ﬁ

II1.1) Validity of the constraint equation
The constraint equation assumes that a modelization of the irradiance
function f(x,y,1) according to a first order Taylor's expansion is
verified. In our study, f is a digital signal; i.e. a discrete and
quantified signal, If the constraint equation is always valid when
mathematical limits are computed we have to verified that these
hypothesis are really repected. The easiest mean consists in cheking
that the irradiance function slope does not exceed the pattern
displacement Fhat is why we have low pass filtered the image before
computing the optical flow coefficients.

I11.2) Interest of computing optical flow
We proposed a method based on an optical flow estimation that will
locally sharpen the global translatory motion estimation. This
method, based on a differential analysis is obviously less robust
than the matched filter and limited to low displacements : as the
speed increases, the robusiness decreases. But after the global
displaccinent estimation, the estimation of the opiical Mow vaiue:
for the pixels precedly selected for the GHT computation allow 1o
sharpen the kinematic map. The optical flow estimation takes into
account homothetic or rotational movement, discriminates the
motion between different pattern within a window.

111.3) conclusion

This method that combines optical flow estimation afier global
displacement gives a semi-dense velocity map as shown in figure
10.

results

1V) Some

system X Perspective projection %
The velocity perceived is not the same for the two clouds

Figure 2 : perspective projection and occlusion phenomenon
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V) Conclusion

As a conclusion, we proposed a new approach with motion
extraction in the case of cloud velocity estimation. We first
propose:! and tested an entropy criterion which leads our process in
windows where there is a lot of disturbance in time (i.c. edge of
moving clouds). We tested a new approach to maich feature points
by means of a polar constraint on the generalized Hough transform
method. We compared the results using the cross-correlation method
and proposed two normalized credibility factors. Meanwhile we
tested optical flow techniques to define accurately and more locally
the velocity component to obtain a dense kinematic field estimation.
The translation aspect is satisfactorily calculated by means of the
GHT method and the other aspects (homothetic or rotationnal
motions) will be take into account with optical flow estimation,

We tested these methods on actual pictures and showed the
improvements brought by these techniques. Within the framework
of our processing chain, optical flow techniques are implemented to
accurately and more locally define the velocity componcnts in order
1o obtain a dense kinematic field estimation, after a global recalage
by means of a global matched filter. A new contribution toward
understanding motion estimation has been presented. Since then, a
continuous interaction between theorctical and experimental
investigations has resulted in a gradual development of how local
and global methods might be combined and how such a formulation
could be evaluated in an autonomous processing chain,
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