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ABSTRACT

A point feature based algorithm is presented in this
paper which solves the problem of target tracking given
a binocular image sequence. As the object motion is in
general subject to a certain but unrevealed differential
equation, we develope an autoregressive moving average
(ARMA) model 1o fit the motion profile while taking into
account the observation error. The prediction procedure
and the matching procecures are carried out based on the
ARMA model. Some experiments on real images with differ-
ent target motion are provided to demostrate the efficiency
and robustness of this model based approach.

1 Introduction

The objective of visual tracking is to keep the tar-
get object at the image center all the time in the com-
plex visiual environment. Visual tracking has found its
applications in areas such as aircraft and missile tracking,
robot manipulation of objects, navagation, traffic monitor-
ing, cell motion and tracking of moving parts of body in
biomedicine. More recently, with the increasing interest
in active vision systems, visual tracking becomes an indis-
pensable part in tasks such as attention and gaze control,
which select the processing region restrictively according
to its location, motion, or depth so as to utilize the limited
computational resources [1]

Most of the previous methods are composed of three
main steps: target region selection and feature extraction,
feature corresponcence, and depth structure estimation.
The feature correspondence problem, although discussed
extensively in many early works, is inherently difficult
and tends to be computationally intensive. As a new trend,
some researchers try to utilize various stochastic models as
predictors and alternatively achieve the correspondence via
prediction and verification procedure. A simplified model
called "stochastic approximation” is proposed in [2] to as-
sist in the matching as a fast predictor. A Kalman filtering
based appoach is exploited in [3] for token correspondence.
However, to make these models effective, the target mo-
tion is under vigorous constraints, that is, the target ve-
locity should remain relatively unchanged throughout the
samples sufficient to determine the stochastics.
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We present in this paper an algorithm for tracking tar-
get object in the complex visual environment from a binoc-
ular image sequence. A comner feature detector proposed
in [4] is applied to each image to locate those character-
istic points which yield high curvature in their local edge
profiles. As the preprocessing step, we use the correlation
based method to match the feature points both in space
and in time, thus produce the partial 3D trajectories with-
out prior knowledge of the target motion. As the object
motion is subject to some unrevealed differential equation,
we introduce the ARMA model to fit the motion trajec-
tory and to reflect the drift in stochastics. The ARMA
model is initialized by the partial 3D trajectory obtained
from the preprocessing, and the model is used to gener-
ate the predicted point, and correspondence is established
by comparing the projections of the predicted point and
the actual image feature points. The spacial locations of
the feature points are computed from their projections, the
trajectories are extended and the ARMA model parame-
ters are updated. We implemented the algorithm on the
University of Illinois Active Vision System with two mo-
torized CCD cameras coupled with the camera positioning
units, the imaging parameters (tilt, pan, translation, and
independent vergence) and the intrinsic parameters of the
lenses (focus, aperture, and zoom) are controled by the
high level routines that could be called in the visual pro-
cessing programs.

We sketch the overall algorithm in a brief manner in
Section 2, and describe the preprocessing procedure in Sec-
tion 3. The ARMA model prediction and correspondence
are explained in detail in Section 4. As the last section
before the conclusion, we present the implementation of
the algorithm and demonstrates some experimental results
on real images.

2 The Target Tracking Algorithm

In this research, we work on a binocular image se-
quence taken by the dynamic camera system. We define
the goal of the visual tracking as to fixate the cameras on
the centroid of the visible object surface represented by its
characteristic points.

The block diagram of the tracking algorithm is shown
in Figure 1. The image sensors capture the left image and
the right image under the controlled system configuration.
The corner feature detector extracts the edge profile at



first, and then fits the local edge segments with arcs, the
centers of those arcs whose curvature values exceed the
threshold will become the feature points [4]. The ARMA
model is applied to produce the predictions in 3D space,
and the partial trajectories used to initialize the model
are provided by the preprocessing step via the correlation
based method. The feature point correspondences are
determined by comparing the projections of the predicted
3D points and the features on the image planes obtained
from the comer feature detection. The 3D locations of
the feature points are constructed from their projections,
and the centroid of these points will be the fixation point
for the cameras. In the meantime, the 3D trajectories are
extended to include the result from the current step and the
ARMA model is updated based on the extended trajectory.
The camera control module calculate the optimal camera
movement necessary lo fixate the centroid, and send the
new camera configuation to the motor actuators.

Fig. 1 Block Diagram of the Target Tracking Algorithm

Some common assumptions are implied in this work.
How to find out the target object and derive the target re-
gion is a difficult but task-oriented problem, which belongs
to the category of pattern recognition. We hypothize that
the image region that contains the target object are given
initially, the left image and the right image are registered
at the beginning. Once the target is locked on, its projected
regions could be updated automatically in the subsequent
image frames. The target object is moving at a speed which
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causes only several pixels displacement during the prepro-
cessing phase, as the correlation based method searches
the matching points in the vicinity of the expected loca-
tions, although the target could be accelerated later on.
Fundamentally, the target should be textured so as to pro-
vide sufficient feature points that could be extracted by the
corner feature detector.

3 Preprocessing

Assume we are given the left image sequence L,
La, and the right image sequence R;, Ry, ...,
Rn, ..., we apply the corner feature detector to the first
frame of the left image sequence L, to produce sufficient
number of feature points. Let us denote the i — th feature
point on the left image plane at time instant k as pj ,
and the i — th feature point on the right image plane
at time instant k as pj . Let us consider an arbitrary
trajectory that starts from pj , for each subsequent image
Lk = 2,3,---, N, in the left sequence, we extract a
template centered at the feature point py _ in the previous
image frame Li_), denote as A}y _ (s,t), where s,t =
1,2,---,M. Since we assume that the matching point
for pj,_, in image L; lies in the vicinity, we try each
candidate point, calculate the normalized mean correlation
function of the template centred at the candidate point and
the original telplate Ay, (s,t). The point which yields
the maximum correlation value is chosen as the maitching
point of pj, _,i.e. pi, . The normalized mean correlation
function g of two templates A and B is given as
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where 14 and pp are the means of templates A and B
respectively.

The correspondences of the left image features and
the right image features are performed in the similar way
by calculating the normalized mean correlation function,
except that in the right image, the candidate points are
located along the epipolar lines. The 3D locations of the
feature points could be easily computed after we establish
the point correspondences, and the partial 3D trajectories
are obtained from the interframe correspondences. These
trajectories are then used as the observations o initialize
the stochastic ARMA models.

4 the ARMA Model for Feature Prediction
and Correspondence

Several approaches have been developed to determine
the feature point correspondences based on the assumption



that the image trajectory of a certain feature point sub-
stends some "smoothness". For instance, Sethi and Jain
suggested in [5] the Greedy Exchange Algorithm to maxi-
mize the path coherence function, which tends to preserve
the magnitude and the direction of the target velocity. But
as pointed out in [2], this is a brute forth search method,
with vigorous assumption that the target is taking approx-
imately rectilinear motion.

We propose an autoregressive moving average model
for 3D feature prediction and correspondence in this paper,
and it has several advantages comparing to the existing
methods. From the theory of time sequence analysis,
we know that there always exists a high order ARMA
model 1o fit an arbitrary data set with required precision,
Based on this fact, the arbitrary object motion could also
be approximated by an appropriate ARMA model, which
reflects the motion dynamics and the observation error.

Generally, for a stochastic process Xy, { = - -0, - -
1,0,1,-+, n,- -, the ARMA(q, ¢ — 1) model expresses the
dependence of X, on the previous states and the previous
fitting errors a,—y, ag—2, ' -+, @—g4+1, Which may be written
in the form
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where ¢y, g, - -, ¢, are autoregressive coefficients,
0y,09,-,0,_1 are moving average coefficients, and the
fitting error at is subject to the indepedent normal distri-
bution with variance o,.

Suppose Pi(xx,yx, zx) is the 3D point at time sample
k on an arbitrary trajectory, where k = 1,2,---,n, we try
to fit z, y, and z coordinates with three independent ARMA
models, that is, to find model parameters ¢, j, ¢, 2,
¢z’,fp gr,lv gz,!v e ] ﬁr‘q-—]: ¢'y,1s ‘;by_?v Ty ¢y.q'6y,l- ﬂy,?s
Aty Gy,q—l: ¢z.1| ‘35:.?- T Qt':'q‘ gz,lv 9:,2! Tty az,q—l from
three observation sequences zi,yi, andzg, k = 1,2,---,n.
There are standard methods to estimate the ARMA model
parameters from finite observations in the literature of time
series anylysis, and we use "mothod of moments” proposed
in [6]. The autocovariance function is estimated from the
samples and the Yuke-Walker equations are solved. Since
the stochastics are changing, we calculated the autocovari-
ance function from the latest N samples.

For a given ARMA(q, ¢ — 1) model in the form
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where a, ~ NI1D(0,c2), the forward prediction has
the form

*\”l+l = Xe+ ¢ X140+ 0 Xi—gi1 — hra—

02a¢—1 =+ — Og_18¢—g42
4.4)

and the prediction error e, = X141 — Xy is subject
to NID(0,02).

As a summary, the ARMA model based prediction
and feature points matching take the following steps:

1.determine the model parameters for z, y, and z
coordinates of each point that belongs to the same parital
trajectory using the method of moments.

2. detect the feature points in the current left image
and right image.

3. make a forward prediction based on the ARMA
model derived in step 1 or in step 6.

4. project each predicted point onto the left image
and choose the nearest feature point as its correspondence,
same procedure for the right image.

5. derive the 3D location of the feature point since we
have obtained its projections, and extende the 3D trajectory
related to this point.

6. repeat step 2 with the updated trajectory.

5 Experimental Results

The tracking algorithm detailed in the previous sec-
tions was implemented on the University of Illinois Vision
system [7]. The dynamic camera system which consists
of a pair of high resolution monochrome CCD cameras,
positioners, and lens controllers is capable of changing its
tilt, pan, vergence, translation settings and controlling its
lens parameters such as aperture, focus, zoom from the
host workstation.

Initially, the cameras were made to fixate an cylindri-
cal object resting on a sliding rail and against a textured
background. The object was moving at an approximately
constant speed while the stereo image sequence was be-
ing taken. Figure 2 shows four images of the sequence
while the algorithm was at the model construction phase,
and no camera movement was made at that stage.. Figure
3 shows the image of the sequence while the algorithm is
in prediction and tracking phase, and the object is being
centered after each cycle.



(a). The first left image. (b). The first right image. (c). The seventh left image. (d). The seventh right image.

Fig. 2 Figures (a) and (b) show the first image pair and the correspondences of feature points;
Figures (c) and (d) show the seventh image pair and the correspondences of feature points.

(a). The tenth left image. (b). The tenth right image. (c). The fifteenth left image. (d). The fifteenth right image.

Fig. 3 Figures (a) and (b) show the tenth image pair and the correspondences
of feature points; Figures (c) and (d) show the fifteenth image pair.
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