MVA 92

IAPR Workshop on Machine Vision Applications

Dec. 79,1992, Tokyo

Error Correction for Recognition of Handwritten Kanji Names
Using a Name Knowledge Base

Katsumi MARUKAWA¥, Masashi KOGA*, Yoshihiro SHIMAY¥,
and Hiromichi FUJISAWA**

* : Central Research Laboratory, Hitachi, Ltd.
1-280 Higashikoigakubo Kokubunji-shi Tokyo, 185 JAPAN
** : Software Development Center, Hitachi, Ltd.
549-6 Shinano-cho Totsuka-ku Yokohama-shi Kanagawa, 244 JAPAN

Abstract

The error correction algorithm for handwritten Kanji
name recognition is presented, here automatically corrects
errors and rejects even when users write Kanji names without
being conscious of formal notation rules. The algorithm
consists of a word matching function and an evaluation
function. For word matching, a high-speed automaton-type
method extracts, in real time, 1st and 2nd name from any
position in one continuous name. The evaluation function is
carried out only when 1st and 2nd name are written as one
continuous string. The evaluation function determines the
right name by using a positional condition between 1st and
2nd name. When this algorithm was run on 13,926
handwritten Japanese Kanji names, it corrected 63.3 percent
of the recognition errors and rejects in real time.

1. Introduction

Efficient automation of offices will require information
entry systems [1]-[3] to use an Optical Character Reader
(OCR) that can recognize the information written on papers.
Information entry systems must recognize large amounts of
information, and a name is a useful reference for arranging of
information. The system should perform the following three
tasks: it should correct recognition errors and rejects with a
high precision, it should recognize names in real time, and it
should handle names written in several notations.

Several Kanji name entry methods have already been
developed, and one uses only the results of an OCR.
Handwritten Kanji recognition has problems. For example,
Kanji has about 7,000 categories, many similar characters,
and much variability between writers. This method is
therefore not suitable for information entry systems. Another
method [4]-[5] uses a knowledge base. In recognizing
characters on a voucher, recognition items name, address and,
so on are determined in advance, so that this method can
recognize the items by using appropriate knowledge bases.
The procedure matches results of recognition with words
included in a knowledge base. Thal is, the procedure is word
matching. Word matching algorithms for Kanji recognition
are classified into two categories. One category (a) is a
compound word matching [6].

The second category (b) of algorithm we propose is an
automaton-type word matching [7]. In category (a), a string is
compounded of candidate characters. If the string exists
within a knowledge base, it is regarded as a candidate word.
When a continuous string consists of multiple words, this
algorithm creates huge strings. And when the right character
is not among the candidate characters, the right word can not
be extracted. The length of a word is L and the number of
compounded strings is Y= 1_5Zj=|,iKL. When K is about 3 [6],
this algorithm has no problem. But when K is about 20, it is
not suitable as the word matching algorithm. Algorithm (b),
the other hand, uses a Finite State Automaton (FSA) [8]-(9]
made from candidate characters. Words to input to the FSA
are searched from within the knowledge base according to

303

candidate characters. And this algorithm has a faculty for
extracting words even when the right character is not among
the candidate characters. As a result algorithm (b) is faster
than algorithm (a) and can be more precise.

This paper proposes an error correction algorithm for
handwritten Kanji name recognition. Errors and rejects of a
character recognition are automatically corrected with the
help of a name knowledge base. Furthermore, when users
write Kanji name on a voucher, they usually must obey
certain rules. Our proposed algorithm, however, allows users
to write names without being conscious of the rules. It consists
of a word matching function and an evaluation function. For
word matching, a high-speed automaton-type method [10]-
[11] extracts the 1st and 2nd names from any position in one
continuous name in real time. The evaluation function is
carried out only when 1st and 2nd name are written as one
continuous string. The evaluation function evaluates the name
by using the positional condition between the 1st and 2nd
names. The algorithm has been run on 13,926 handwritten
Japanese sample Kanji names, and it corrected 63.3 percent of
the recognition errors and rejects in real time.

2. Error Correction for Handwritten Kanji Names
Recognition
2.1 Japanese Kanji names and how to write them
Japanese Kanji names are written, for example, as shown
in Fig. 1. People write an name as one continuous string or as a
1st and 2nd name with delimiting spaces. Fig. 1 shows the
name wrilten as one continuous string. When people write
names on vouchers, they must obey a name-writing rule: that
names be written as 1st and 2nd name with delimiting spaces
in order to improve the precision of recognition.
Japanese write a name as one continuous string without
delimiting spaces. It is therefore important to extract words
from any position in the string. And as shown in Table 1,

Handwritten name
i daES

didate lattice

M
il
-

E3
2
i ¥
fir '
| %

Fig. 1. Candidate lattice example.

®

C

1st
2nd

B S
R R
...H

Table1. Distribution of word lengths.

2nd name
(words)

1,287
42,261
16,941

800

1st name
(words)

750
28,256
9,172
53

Length

-hbwf\)_L

5
Total

2
34,233

43
61,332

Japanese Kanji names are short. For example, 1st and 2nd
names have an average of 2.4 characters. There are also one-
character names and two-characters names with only one
different character, such as "&K # " (Ooi) and Ko
(Ohta). When names are written as one continuous string, it is
difficult to distinguish 1st and 2nd name such as
KA T KB ol o A
‘4% ko F"). Finally, the Japanese language includes
three kinds of character sets: Kanji, Hirakana, and
Katakana. There are about 7,000 characters.

2.2 Target of error correction

The proposed algorithm recognizes Japanese names
written on vouchers. A continuous name, for example, is
scanned and up to K candidates for each character are output.
For handwritten Kaniji recognition, K is about 20. A candidate
lattice is made from candidate characters (Fig. 1). The
algorithm needs to accomplish the following three tasks.
First, the word matching needs to extract the right names at
any position from the candidate lattice by using a name
knowledge base consisting of one hundred thousand names.
Second, even if the right character is not among the
candidate characters, the algorithm needs to acquire the
right name in real time. Finally, even if names are not
written in formal notation, the right name needs to be
acquired.

3. Error Correction Algorithm

3.1 Outline of error correction

The proposed algorithm consists of a word matching
function and an evaluation function (Fig. 2). The word
matching function that we have already developed carries
out high-speed automaton-type word matching by shifting

the word matching position [10]-]12]. The evaluation function
evaluates names by using a positional condition and penalties
output at word matching. The general processing flow of this
algorithm consists of four stages. First, candidate characters
for a handwritten Kanji name are output. A candidate lattice
is made from theses characters. In the second stage, word
matching is carried out by shifting the word matching
position. Only candidate names and their penalties are
output. This penalty shows the ambiguity of a candidate
name. In the third step, the evaluation function is carried out
only when users write a name as one continuous string. In this
function, the positional condition determines whether a
candidate 1st name and a candidate 2nd name can be
connected or not. Ambiguities of candidate names are
calculated,and the right name 1s estimated according to the
value of these ambiguities.

3.2 High-speed automaton-type word matching

A Kanji character is represented by 2 bytes. This
algorithm transfers once for one character according to the
code that has compressed a 2-byte code. This algorithm also
extracts words at any position in the continuous string.

3.2.1 Principle of the word matching

The word matching consists of an automaton generator, a
high-speed automaton-type word matching part, a name
knowledge base, and a word search controller (Fig. 2). The
general processing flow consists of four stages. First, a
handwritten string is scanned and a Kanji recognizer outputs
up to K candidate characters for each character. A candidate
lattice is made from these candidate characters. In the
second stage, the automaton generator generates a high-
speed FSA from the candidate lattice. In the third stage, the
word search controller searches for words included in a name
knowledge base based on candidate characters, and when it
finds them they are input to the high-speed automaton-type

word matching part. Then word matching is carried out by
using a word extracting method. Finally, only candidate
words are output.

The high-speed FSA is made from the candidate lattice.
A state transfers once for each character making of an input
word. As shown in Fig. 3, the FSA has (written characters +
1) states and (candidate characters + 1) paths. The penalty
and the compressed code of the candidate character are given
to each path. The state number corresponds to the written
position number. When a compressed code Uj is input to a
starting state, a state transfers from the state to next state
through path Uj. At the same time, the penalty Pj is read.
This penalty is assigned according to the order of the outputs
of the character recognition. If the character corresponding to
Uj is not among the candidate characters, the state transfers
through another path. In this case, the penalty Pother is
read. That is, the right word can be extracted even if the
right character is not among the candidate characters. The

Handwritfen name Word Matching Evaluate .
[[ﬂh# ﬁ | 3f| - O:zler Can;c:::;ame
Candidate lattice utomaton High-speed Evaluation
Ist | | ®0 | & | F _] genefalor aulornalon-typ & function [2nd E“P#i
2nd |@ | (R | F word matching
¥ m (@
_] Word search Name
controller knowledge

Fig. 2. Outline of the error correction algorithm.

304

'y ¥ ('} i
f#[P2] | | #[P2] || #A[P2) || F[P2]
(Oxdc3) | |(0x13a1)| |(0x1440)| | (Oxab1)
HE[P3] ﬁ[PS]_ #[P3] B}[P3]
(Oxca0)| |0x186e) | (0x1f2) | |(Ox15ea)
other other other other
[Pother_]_ [Potherl [Pother] [Pother_l

(] : Penalty
() : Compressed code

Fig. 3 Representation of high-speed FSA.

character recognition outputs candidate characters in order of
highest reliance. So the smaller the penalty, the higher the
reliance of the candidate character.

In the word matching process, the state transfers from the
starting state to the next state after each compressed code
making of a word is input to the FSA. The penalty is read
from the FSA and accumulated whenever a state transfers.
This process is repeated until the end of the word. The
accumulated penalty represents the ambiguity of the word.
The word is regarded as a suitable word only when the
accumulated penalty is smaller than some specified value.
When the accumulated penalty is larger than this value, the
word matching is cancelled. The larger the value set, the
higher the reliance of the word matching. Processing time,
however, becomes excessive and the number of unsuitable
words increases. The value therefore needs to be set by
trading off between the processing time and recognition rate.

This algorithm searches for words within a large
knowledge base by using candidate characters [11],[13]. The
knowledge base is constructed from index tables and a word
table (Fig. 4). Words included in the word table are sorted by
the same key character and searched for by using index
tables. It is supposed that the Pth character of words is
regarded as the key. When the Pth character is among the
candidate characters, the right word is obtained. That is,
the right word can be obtained even if the right character is

Word dictionary

not among the candidate characters output by the OCR. In
addition, the same words are sometime searched for
according to different keys at different points. This has to be
avoided. The word table is sorted by the 1st key. The words
having the same Pth key are linked by the Pth key pointer.
The word search procedure consists of the following four
steps. For this explanation one word is written on a sheet and
I is 2. First, candidate characters are regarded as the 1st key.
Words | [wp wk, w], **] are scarched for at position] by using
the 1Ist index table, and are loaded into a searched word
table. In the second step, words Il '[wi,wk.wp, e are still
searched for at (position] + 1) by the 2nd index table. In the
third step, these words are checked to see whether they
have already been searched for. The check process is:

IF the 1st character of words Il is a candidate at position]

THEN

Search for the next word.
ELSE
Load the word. The word has not yet been searched for.

Finally, only the words II [wj, Wp, *+| that have not yet
been searched are loaded into the searched word table. By
repeating this procedure until the end of a state, it is easy to
apply the word extracting method.

3.2.2 Word extraction at any position

This algorithm extracts words at any position in the
continuous string [11]-[12]. The principle of this procedure is
that a starting address controls the state that starts the word
matching (Fig. 5), and the word matching is carried out.
Thus, it is possible to extract words written at any position.
This procedure has two steps. First, the starting address is set
to a starting state, and the high-speed automaton-type word
matching is carried out. Only suitable words are output to the
candidate file. Second, the starting address is shifted by one
state and the word matching process is repeated. This second
procedure is repeated until the starting address reaches the
end of the state. Word matching is carried out only when the
following condition is satisfied: the length of an input word
is less than the number of states that the word matching has
not yet started.

3.3 Evaluation of candidate names

When a name is written as one continuous string, the
right name is evaluated according to the positional
information and the penalties at word matching. The
evaluation function has four procedures (Fig. 6). First,
candidate 1st names and candidate 2nd names are
compounded. In the second step, the positional condition
between candidate 1st names and candidate 2nd names is

Index
Candidate v Length WUT: l:blf-‘ oot Sefktiog
1st key eng of pointer) I
lattice = {W),Wk,Wlee } la:;]e
L2 Sfofi— = pefi | w [Jlcal [e Wk
(cad .--.-‘i M e (Wi, Wk, Wpss} Wi
H I p Lol D j .s
| ke e N e (Wi Wpeel| WP
2nd kye | Li| % |C Check function Wi
ey ! T < .
= N G T I o N

Fig. 4. Representation of a knowledge base for word searching.

305

Candidate,

Word —
penalty

3

Starting
address

©: State at which start word matching

Fig. 5. Word extraction at any position.

candidate 1st names
and
candidate 2nd names.

Compound

Y

Check positic;nal condition.

Y

Calculate ambiguities.

Y

Estimate the right name.

Fig. 6. Evaluation of candidate name
for one continuous string.

checked. As a result, 1st and 2nd names are selected. In the
third step, ambiguities of one continuows name are calculated
by using the penalties of the 1st and 2nd names. Finally, the
right name is estimated from the value of these ambiguities.

4. Experimental results

4.1 A method of experiments

We implemented this algorithm at a workstation as
software written in C language. The workstation used in the
experiments a 32-bit CPU (MC68020, 20 MHz) and a 16-Mbyte
main memory. The processing faculty of this workstation was
about 1 MIPS.

We verified the effectiveness of this algorithm by using
13,916 samples names. Both the 1st names and 2nd names had
the average of 2.4 characters. The number of candidate
characters was 15, so the candidate lattice was a 15*L matrix
(L is the length of an input name.) The name knowledge base
include 34,233 1st names and 61,332 2nd names (Table 1). Two
percent of all 1st and 2nd names were one-character names;
the other 98 percent were names with more than two
characters.

4.2 An example of error correction

An example of an error correcting result is shown in Fig. 7.
This figure shows a handwritten name “ g "
(Tanaka Sachiko), a candidate lattice, and a processing
result. Character recognition outputs the right character for

Handwritten name
P2 |3

Candidate lattice

1st
2nd

m [T B B A B 13 o] B I (e B B
A O R R

R 4ot st it e it Jme bt B Y - e
- N B S i R S i H N

15th
1st candidate : BhEF

Fig. 7. Corrected example.

the 2nd written character “4 “ (naka) in the 2nd order, for
the 3rd written character “# “ (sachi) in the 3rd order, and
some right characters as the first candidate. The proposed
algorithm acquired the right 1st and 2nd name as one
continuous string.

4.3 Correction rate

The correction rate is the rate of correcting recognition
errors and rejects. We used unconstrained handwritten
samples when measuring the correction rate of the 1st and
2nd names. Fig. 8 shows the relation between the correction
rate and the order of the candidate characters. For the 1st
name, 62.8 percent of the recognition errors and rejects were
corrected, and for the 2nd name 63.8 percent of the recognition
errors and rejects were corrected. An average of 63.3 percent of
the recognition errors and rejects in the first order were
corrected.

4.4 Processing time

We measured the processing time of 1st and 2nd names and
the total processing time per Japanese sample name (Table 2).
The total processing time was 116.9 msec, which is fast
enough to be practical. The high-speed automaton-type word
matching acquires names by using candidate characters. The
time it requires depends on the number of candidate
characters, so the proposed algorithm is faster if the
character recognition outputs fewer candidates.

5. Conclusion

We proposed an error correction algorithm for that uses a
name knowledge base handwritten Kanji name recognition,
This algorithm uses high-speed automaton-type word
matching based on the shifting word matching position.
Users can write names on vouchers without being conscious of

100
80+ —O— : 1st name
=== - 20d NAMe
< 601
2
5]
o 401
® number of samples : 13,169
20 - ® average length : 2.4
® number of candidate characters : 15
0 T T T T T

1 2 3 4 5
Order of candidate characters

Fig. 8. Correction rate for Kanji names.

of formal notation rules. Experimental results show that 63.3
percent of the character recognition errors and rejects from
13,916 handwritten Japanese sample names were corrected in
real time.

REFERENCES
(11 K. Seino, Y. Tanabe and K. Sakai, "A Linguistic Post
Processing based on Word Occurrence Probability, "Proc.
2nd Int. Workshop on Frontiers in Handwriting
Recognition, pp. 191-199 (1991).

K. Marukawa, M. Koga, Y. Shima, and H. Fujisawa,
“An Error Correction Algorithm for Handwritten Chinese
Character Address Recognition, "Proc. ICDAR 91 1st Int.
Conf. on Document Analysis and Recognition, pp. 916-924
(1991).

K. Marukawa, M. Koga, Y. Shima, and H. Fujisawa,
"A Resolution of Input String Ambiguity by Using Address
Knowledge base, "National Convention Record of [apanese
Inst. of Electron. Infor. and Comm. Eng. , 6-51, (1991, in
Japanese).

E. M. Riseman and A. R. Hanson, "A Contextual
Postprocessing System for Error Correction Using Binary N-
grams, "IEEE Trans. on computer, Vol. C-23, No. 5, pp. 480-
493 (May 1974).

T. Kawada, 5. Amano, and K. Sakai "Linguistic Error

12]

131

14]

151

307

Table 2. Processing time.

Measured time
(msec)

65.5

Procedure

First name

Second name 51.4

Total 116.9

Correction of Japanese Sentences, "Proc. COLING 80, pp.

257-261 (1980).

T. Sugimura, "Error correction method for character
recognition based on confusion matrix and morphological
analysis, "Trans. of Japanese Inst. of Electron. Infor. and
Comm. Eng. , Vol.]J72-D-1I, pp. 993-1000 (1989, in
Japanese).

K. Marukawa, M. Koga, Y. Shima, and H. Fujisawa,
"Automaton-type Word matching for Character input
systems, "National Convention Record of Japanese Inst. of
Electron. Infor. and Comm. Eng. , 6-80, (1990, in Japanese).

W. A. Wulf, M. Shaw, P. N. Hilfinger, and L. Flon,
"Fundamental Structure of Computer Science, "ADDISON
WESLEY (1981).

A. V. Aho and M. |. Corasick, "Efficient String
Matching, "Com. of ACM, Vol. 18, No. 6, pp. 333-340
(1975).

[10] K. Marukawa, M. Koga, Y. Shima and H. Fujisawa,
"A High Speed Algorithm for Automaton-type Word
Matching”, National Convention Record of Information
Processing Society of Japan, 2-135, (1990, in Japanesc)

1) K. Marukawa, M. Koga, Y. Shima, and H. Fujisawa,
"A High Speed Word Matching Algorithm for
Handwritten Chinese Character Recognition, "Proc. Int.
Workshop on Machine Vision Applications (MVA-90), pp.
445-449 (1990).

[12] K. Marukawa, M. Koga, Y. Shima, and H. Fujisawa,
"A Word Extraction Method for Ambiguous Input String by
Using Automaton-type Matching, "National Convention
Record of Japanese Inst. of Electron. Infor. and Comm. Eng. ,
6-110, (1992, in Japanese).

[13] Y. lida and T. Sugimura, "A Study of word matching
method with Dictionary for pattern recognition, “lapanese
Inst. of Electron. Infor. and Comm. Eng. , PRL82-77, pp. 93-
98, (1982, in Japanese).

6]

(71

18]

191

