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ABSTRACT 

In this paper, we investigated six distinct partitions 
of wavelet packets selected from a complete decom- 
position and measured their performance in terms 
of sensitivity and selectivity for the classification of 
twenty-five natural textures. Both energy and en- 
tropy metrics were computed for each wavelet packet 
node and included in distinct features for representa- 
tion. Each subset of wavelet packet nodes reflected 
a specific scale and orientation sensitivity. Wavelet 
packet representations for twenty-five natural tex- 
tures were classified without error by a simple two- 
layer network classifier. 

Texture signatures computed from wavelet packet 
energy were more reliable than entropy signatures 
computed from the same wavelet packet basis. A 
longer analyzing function (Dzo) was shown to be more 
efficient in representation and discrimination than a 
similar function of shorter length (D6). Energy repre- 
sentations computed from the standard set of wavelet 
nodes alone (17 features) were sufficient for errorless 
classification of the twenty-five textures included i~ 
our study. The reliability exhibited by texture signa- 
tures based on wavelet packets suggest the potential 
to realize robust classification and subtle discrimina- 
tion. 

I n d e x  Terms-Feature extraction, texture analy- 
sis, texture classification, wavelet transform, wavelet 
packet, neural networks. 

1 Introduction. 

Texture is an important characteristic for the anal- 
ysis of many types of images including natural scenes, 
remotely sensed data  and biomedical imaging modal- 
ities. The perception of texture is believed to play an 
important role in the human visual system for recog- 
nition and interpretation. Despite the lack of a com- 
plete and formal definition of texture, a large number 
of approaches for texture classification have been sug- 
gested [l-71. 

Previous methods of analysis for accomplishing 
texture classification may be roughly divided into 
three categories : statistical, structural and spec- 

tral. [lo] [ l  11 [12] [13]. Experimental evidence on hu- 
man and mammalian vision support some sort of 
spatial-frequency (scale) analysis that  maximizes the 
simultaneous localization of energy in both spatial 
and frequency domains.Along this line, several impor- 
tant studies have been reported recently.[l6] [17][18] 
[19][20][7][8][9]. In this paper, we present a novel 
method of texture classification by multiresolution 
representations from wavelet analysis. 

Wavelet theory provides a precise and unified 
framework for spatial-scale analysis. Carter [21] first 
reported texture classification results using Morlet 
and Mexican hat wavelets. He achieved 98 percent 
accuracy on 6 types of natural textures. However, 
these wavelets were not orthonormal, and the Mexi- 
can hat wavelet lacked direction selectivity. In this 
paper, these drawbacks are overcome by using or- 
thonormal and compactly supported wavelets. The 
advantages are twofold. First, since the representa- 
tion features a t  each scale are obtained by decompos- 
ing a signal (image) onto an orthonormal basis [22], 
correlation between scales is avoided. Second, ori- 
entation selectivity is built into the two-dimensional 
orthonormal wavelets included in our study. Exper- 
imentally, these capabilities demonstrated increased 
sensitivity and selectivity for reliable texture discrim- 
ination. 

In this paper, we introduce a methodology for 
identifying texture representations based on wavelet 
packet analysis [23][24]. Wavelet packets are a gen- 
eralization of orthonormal and compactly supported 
wavelets [27] [22]. In this paper we show that such an 
analyses provides a powerful method for accomplish- 
ing robust texture classification. The efficacy of the 
technique is demonstrated by classification without 
error of 25 natural teztures. 

2 Wavelet packet signatures. 

Wavelet packet analysis, pioneered by R. Coifman 
et a1 [23][24] has been successfully used for data  com- 
pression [25] [26]. Wavelet packets may be described 
by a collection of functions {W,(x)lj E Z+}  obtained 
from 

2 9  w~,(~P-'z - I )  = hm-2,2f W,(~PZ - rn) (1) 
m 



where p is a scale index, I is a translation index, 
Wo(x) = I$(x), Wl(x) = $(x), I$(x) is a scaling func- 
tion and $(x) is a basic wavelet (271 [22]. The discrete 
filters hk and gk are quadrature mirror filters [28][27] 

1221. 
We can show [23] that  such wavelet packets are 

orthonormal in L2(R) and serve as bases similar to  
sinusoid functions in Fourier analysis. Furthermore, 
wavelet packets are well localized in both time and 
frequency and thus provide an attractive alternative 
to pure frequency (Fourier) analysis. 

The inverse relationship between wavelet packets of 
different scales can be shown by, 

(3) 
Analogous to  Fourier methods, any function f (x)  E 

L2(R) can be decomposed onto a wavelet packet ba- 
sis. The coefficients of this decomposition are simply 
the inner products o f f  (x)  with distinct wavelet pack- 
ets. For example, coefficients from the inner prod- 
uct (f (x), Wn(2Px - k)) indicate the intensity of this 
component in f (2). An approximation of an original 
function f (x)  using wavelet packet Wn a t  scale 2P can 
be written as, 

where 
m 

s:, = 2: 1- f (x) Wn(2'x - k)dx ( 5 )  

and denotes the complex conjugate of x. Next, 
we show how wavelet packets may be computed ef- 
ficiently. 

From equation (3) , we have 

Using equations (1) and (2), coefficients a t  coarser 
scales are calculated by 

Note that for standard wavelet decompositions [22], 
only two wavelet packets Wo and Wl are used. In this 
case the index n is restricted t o  n = 0, and only S: 
are decomposed from equations (7) and (8). 

For discrete signals, we treat the original discrete 
signal as the set of wavelet packet coefficients for the 
first scale (p = O), and then apply the technique de- 
scribed above. 

The basis functions are obtained by translation and 
scale change. They remain well localized in both time 
(spatial) and frequency domains and thus represent 
scale and spatial information. Therefore, a complete 
tree presents the distribution of a signal within a scale 
space continuum. Note that the total number of co- 
efficients in a complete tree decomposition is exactly 
equal to  the number of points (pixels) in an original 
signal. 

Energy distributions within transform spaces have 
been applied in Fourier analysis. Since wavelet pack- 
ets form orthogonal bases, their decompositions also 
preserve energy. It  is easy to  show that 

Therefore, if we define an energy measure as 
E: = Ck (s:,~)~, then E,P = E;;' + I?;;:,. 

Our stratagy was t o  first compute the energy asso- 
ciated with each wavelet packet node. We hypoth- 
esized that the energy pattern distributed in scale 
space shall provide unique information, and support 
a representation (signature) for classification. Thus, 
a signature was a vector consisting of a set of energy 
features. In the next section, we shall demonstrate 
that such signatures provide a powerful and efficient 
means to  accomplish signal classification. 

An alternative measure is entropy, defined by, 
H(x)  = - lxk12 log lxkI2. This measure was pre- 

k 
viously proposed in [lo] as a feature for texture anal- 
ysis, and has also been used in [29] to  identify a "best 
basisn for building wavelet packet libraries for signal 
compression. In this paper, we compare the entropy 
and energy measures described above for their perfor- 
mance in texture discrimination. 

The extension into 2-D signals is straight forward 
by using a special class of separable 2-D wavelet pack- 
ets. In this case, the energy preserving equation is 
specified by the sum 

E,P,m = EE,:m + EK.:m+l + E2';;1,2m + EK:l,Zrn+l. 

(10) 
Orientation selectivity is embedded in the tensor 

product of the lowpass filter h and highpass filter g, 
and therefore energy distributions are captured in all 
orientations. 

3 Methodology. 
3.1 Texture selection and sampling. 

Twenty-three distinct natural textures were se- 
lected from the Brodatz album [30] and two addi- 
tional textures from public archive. The complete set 
of twenty-five textures is shown in Figure 1. Each se- 
lected texture was digitized and stored as a 512 x 512, 
8bitJpixel digital image. Each sample texture was 
then broken down into 128 x 128 sub-samples. Our 
selection criteria was such that each selected texture 
pattern maintained a certain degree of spatial period- 
icity within its 128 x 128 sample size. 



Figure 2: Log energy maps for wavelet packet nodes 
of levels 2,3 and 4. 

I:igurc 1: 'I'wcr~t.y-five. natura l  textures. 
rowl: Dl,DG,Dll,D20,D21; 
row2: D56,D65,D75,D82,D101; 
row3: D55,D84,D81,DllO,D64; 
row4: D78,D17,D5,D4,D52; 
rows: D14,D8,D16,01,02. 

A two-layer neural network and a minimum- 
distance classifier were used to accomplish supervised 
classification. To obtain a large amount of data  for 
training the classifiers, we adapted a method of over- 
lapped sampling. We extracted 64 sub-samples of size 
128 x 128 (pixels) from each original 512 x 512 sample 
texture. 

3.2 Patitions of wavelet packet 
space. 

A complete set of wavelet packets were computed 
for each 128 x 128 subsample. Discrete filters Ds 
and Dzo were obtained from Daubechies [27]. Due 
to downsampling a t  each decomposition step, the size 
of each subsample was reduced by a factor of four. 

1. Complete set of wavelet packet nodes. Each tex- 
ture subsample was represented by a vector of 
341 features. 

2. Standard wavelets. As mentioned earlier, nodes 
of the  standard wavelet decomposition (Mallat 
[22]) are a subset of a complete wavelet packet de- 
composition. In this case, the four leftmost nodes 
a t  each level of a complete wavelet packet decom- 
position tree were selected. Thus, each subsam- 
ple was represented by only 17 features. 

3. Levels 1, 2 and 3. In this case, each texture 
sample was represented by exactly 84 features. 
Energy features computed from wavelet packet 
nodes of levels 0 and 4 were discarded. 

4. Levels 2 and 3. Each texture sample was repre- 
sented by exactly 80 features. 

5 .  Level 3. Each texture sample was represented by 
exactly 64 features. 

6. Level 4. Each texture sample was represented by 
exactly 256 features. In this case, energy features 
were from a single coarse scale. 

Thus, a subsample at level four, consisted of 64 (' For each of the six representations above, we ,-om- ' ') coefficients' that each parent node had puted feature vectors for each of the 64 subsamples of 
four children. Therefore, a complete five-level decom- each texture. Our database consisted of 42 samples 
position (levels 0 4, had 341 for classification training and 22 samples for testing. 
packet nodes. Therefore in total, our study processed 1050 (42 x 25) 

We the energy (and entropy) contributed sample signatures in training and 550 (22 x 25) sample 
by each wavelet packet node, and treated its real value signatures in testing classification performance. 
as a distinct feature element. Thus, in our represen- In Figure 2, we show three texture samples, and the 
tation, the maximum number of features encoded for energy signatures corresponding t o  the wavelet packet 
a sample texture consisted of a vector of 341 real val- of levels 2, and (from top to bottom).The energy 
ues. However, we investigated the classification per- map was obtained by first computing the logarithm 
formance of each signature using distinct subsets of for each feature value, then globally scaling the values 
wavelet packet nodes. Each subset consisted of nodes within a 0-255 range. Therefore, Figure shows a 
reflecting a certain scale and orientation sensitivity. normalized energy distribution for each signature. 
We considered six distinct partitions of wavelet pack- 
ets selected from a complete decomposition tree (full 3.3 Discrimination using a simple 
recursion) and measured their performance in terms 
of sensitivity and selectivity for the classification of 

minimum-distance classifier. 

all twenty-five natural texures. Below, we identify the To decide the efficacy of wavelet packet signatures 
six partitions of wavelet packet nodes that  provided for texture classification, the performance of a sim- 
distinct bases for feature representation: ple minimum-distance classifier was evaluated. The 



single prototype minimum-distance classifier [33] was 
based on the assumption that each pattern class wt. 
is representable by a prototype pattern Z k  (class cen- 
ter). The minimum-distance classifier assigned a pat- 
tern X of unknown classification to the class 4, if 
the distance Dk between X and Zt. was minimum 
among all possible class prototypes wj # wh. In ad- 
dition, more sophisticated classifier, described in the 
next section, was evaluated. 

3.4 Discrimination using a neural 
network classifier. 

We examined the classification performance of 
each wavelet packet representation for several network 
topologies. We used a two-layer back propagation 
network [31] with a conjugate gradient function for 
error correction [32]. For each topology, the number 
of input nodes was matched to the dimension (num- 
ber of values) of each wavelet packet representation. 
All network topologies had 25 output nodes, the total 
number of distinct textures ta r~eted .  - 

By using wavelet packet representations, we re- 
duced the number of bits required for each original 
texture pattern by a factor of 240 (w). Thus 
we were able to reduce the number of input nodes 
(bandwidth) of a neural network by a factor of 960 
( m y ) .  

4 Results and discussion. 

In Table 1 we show the performance of three pa- 
rameters included in our study: (a) Energy versus 
entropy based signature metrics, (b) a minimal (stan- 
dard) and maximum (complete) number of wavelet 
packet nodes for representation, (c) Dzo (long) ver- 
sus D6 (short) analyzing functions. When using com- 
plete wavelet packet representations, perfect classifi- 
cation for the twenty-five textures was observed re- 
gardless of the signature (energy versus entropy) or 
analyzing wavelet (D6 versus 020) included. How- 
ever, when texture signatures were computed from a 
minimal (standard) number of wavelet packet nodes, 
perfect classification was observed only for the Dzo 
analyzing wavelet. This demonstrates that (a) longer 
analyzing functions are more efficient for discriminat- 
ing salient textural features (b) perfect classification 
is achievable by a minimal representation of energy 
(based on 17 wavelet packet nodes). For the textures 
included in our investigation, we observed that signa- 
tures computed from energy performed slightly better 
than entropy based representations. 

In Table 2, we show the classification performance 
of energy signatures computed from redundant and 
complete sets of wavelet packet representations. Sig- 
natures computed from wavelet packets of level 3 
alone (64 features) and level 4 alone (256 features) 
yielded perfect classification for all twenty-five tex- 
tures. However, texture signatures computed from 
levels 1,2 and 3 (redundant representations) resulted 

Table 1: Classification results comparing the perfor- 
mance of two signature metrics, number of wavelet 
packet nodes for representation and two analyzing 
functions. 

Sig. 

-- I D6 1 5 1 99.1 1 
E: Energy, H: Entropy, N: Number of Features 

Stand. Dzo 

Table 2: Classification results for energy signa- 
tures computed from redundant and complete wavelet 
packet representations, using a D20 analyzing func- 
tion 

Selected 
Wavelet 
Packets 

H 

in a classification error. This suggests that redun- 
dancy may increase uncertainty (degrees of freedom) 
for the classifier employed in our study. 

Table 3 compares the performance of network 
topologies for each (D6 and Dzo) analyzing function. 
Energy signatures for twenty-five textures were com- 
puted from a standard decomposition (17 wavelet 
packet nodes) and trained for classification. In the 
case of the D6 analyzing function, errors were ob- 
served for all five configurations. Perfect classifica- 
tion was observed only for the Dzo analyzing func- 
tion when the network consisted of exactly three hid- 
den nodes. Note that fewer training epochs were re- 
quired for networks consisting of more hidden nodes. 
In general, signatures computed from D6 analyzing 
functions required significantly more training time 
than signatures obtained from Dzo analyzing func- 
tions. This demonstrates that longer analyzing func- 
tions provide a more efficient representation for tex- 
ture discrimination. 

The simple minimum-distance classifier using 
wavelet signatures from level 3 alone was able to dis- 
criminate 550 sample patterns (22 samples/texture 
x 25 textures) with 96 percent (not shown above) 
accuracy! This result cornfirmed that texture signa- 
tures computed from wavelet packet energies alone, 
are highly efficient representations for texture classi- 

N 

Comp. 

Stand. 

Selected 
Wavelet 
Packets 

Analy. 
Func. 

341 

17 

Level 3 only 
0 100 

Number 
of 

Features 

Num. 
of 

Err. 

Dzo 
D6 
Dzn 

Number 
of 

Errors 

% 
Correct 

% Correct 

0 
0 
1 

100 
100 
99.8 



Table 3: Network training times and topologies for 
classification using D6 and Dzo analyzing functions. 

fication. 

5 Summary and Conclusions. 

% 
Correct 

99.8 
99.5 
99.3 
98.5 

99.6 
99.8 
100 
99.8 

Wavelet packet representations for twenty-five nat- 
ural textures were classified without error by a simple 
two-layer network classifier. A longer analyzing func- 
tion was shown to be more efficient in representation 
and discrimination than a similar function of shorter 
length. Experimentally, we observed that a neural 
network classifier performed best in terms of accu- 
racy and minimal training time when configured with 
exactly three hidden units. 

Surprizingly, our results showed that energy repre- 
sentations computed from the standard set of wavelet 
nodes alone were sufficient for errorless classifica- 
tion. However, finer discrimination may be more 
strongly supported by additional subsets of wavelet 
packets. We suggest that identifying an "optimal" 
set of wavelet packets for texture representation may 
depend on the aggregate of textural features targeted 
for classification. Thus, similar textures consisting 
of variations mostly a t  finer scales may be best dis- 
criminated by representations computed from wavelet 
packets of higher levels. 

With respect to the 128 x 128 pixels/sample sizes 
included in this study, we suggest that representations 
computed from level three (64 feature values) have 
sufficient selectivity and sensitivity for autonomous 
texture classification. Texture signatures computed 
from wavelet packet energy performed better than 
entropy signatures computed from the same wavelet 
packet nodes. 

Num. 
of 

Err. 

1 
3 
4 
8 

2 
1 
0 
1 
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