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ABSTRACT 

We present a new algorithm for topological feature 
mapping. It is compared to other known feature 
mapping algorithms like that proposed by Kohonen 
or Bertsch. The main difference to known 
algorithms is the inversion of the learning step. 
This makes it possible that a neural net can be seen 
as a cellular automaton. A neurone learns from its 
neighbours instead of teaching them the new value 
they have to adapt to. Equivalence of the 
algorithms is shown. The results of the algorithm 
are extremly high parallelization and flexibility in 
neighbourhood definition. This leads to new 
solutions for image segmentation problems. 

INTRODUCTION 

Artificial neural networks are providing the 
possibility of alternative solutions to many old 
problems. The unsupervised self-organizing 
networks with their property of learning and 
extracting important features of a given sensory 
input, has especially shown to be useful for 
segmentation of images and for pattern recognition. 
A very popular and often used self-organizing map 
is the Topological Feature Map (TFM) proposed by 
Kohonen [2]. 
However, TFMs are very slow in the learning 
phase. The reason for this is the typically 
sequential learning algorithm of neural nets. Each 
input is presented to the net one after the other and 
the net adapts accordingly. 
There is much work done to assure convergence in 
the learning phase for a TFM regarding the 
learning factor [4] and the neighbourhood hnction 

[3]. These papers suggest that there is a lower limit 
for the computational steps in the learning phase of 
a TFM. In this paper these problems will not be 
discussed. 
We propose an algorithm which shows the same 
results and which still has some of the drawbacks 
of the original TFM learning algorithm. However, 
the new algorithm offers a more 'holistic' view to 
the learning procedure and allows a tremendous 
speed up in computation due to a very easy paral- 
lelization. In addition to this, it allows for special 
applications some very simple but useful 
modifications to the features of the original TFM. 
In the remainder of the paper, we'll give a 
summary of Kohonen's [2] algorithm and the 
modifications proposed by Bertsch [I]. Then we 
will show how the neighbourhood adaption process 
can be inversed. 

KOHONEN'S ALGORITHM 

Kohonen [2] proposes a new representation of 
complex empirical data by an 'adaptive physical 
system'. It consists of an array A of formal 
neurones. The neurones or units receive random 
input samples from a vector space V. These input 
samples are mapped onto A. Each input VEV is 
represented as a vector v(s) where s denotes the 
time step. Each unit aeA has an internal state a(s) 
represented as a vector of the same dimension as 
v(s). It is also labelled with a unique number. 

The adaptation of A to V is achieved by the 
following steps: 

Step 1: Initialize every a(0) with small random 
numbers. 



Step 2: A veV is picked by random. Find the unit 
a, where a,(s) is most similar to v(s). Call this unit 
a, 'selected unit'. 

Step 3: The internal states ai(s) of this selected unit 
and the units in its topological neighburhood N(aJ 
are changed in a way that they become more 
similar to v(s) (according to (1)). 

Step 4: Find the most similar unit a, for every v,. 

Step 5: Increment c, by 1 and s, by vj. 

Step 6: Proceed with step 2 until the last input 
VEV is reached. 

Step 7: Update the neighburhood N(a) of every a, 
according to (2). 

Step 4: Repeat by going to step 2. 
Step 8: Repeat by going to step 2. 

The similarity between a units' state a(s) and input 
v(s) is measured by the Euclidean distance between 
the two vectors. 
The adaptation rule for the units in the 
neighburhood N(a) is as follows: 

a,@+ 1) =a,@) otherwise 

where a(s) is a slowly decreasing function of time. 
The optimal selection of a(s) and N(a) will not be 
discussed in this paper. 

BERTSCH'S MODIFICATIONS 

Bertsch [I] proposes first to find the most similar 
unit for every input veV and to do the adaptation 
of all the units thereafter. 
Instead of updating each unit by the individual 
input vectors one ofter the other all vectors which 
point to one unit are averaged and the unit is then 
updated by this mean value. He proves that this 
update-algorithm shows the same results as 
Kohonen's original algorithm. The adaptation of A 
to V is now achieved by the following steps: 

Step 1: Initialize every a(0) with small random 
numbers. 

Step 2: Initialize a counter c,=O and a sum s, for 
every a,. 

Step 3: Select an input vieV. 

aJs+ 1) =a,@) otherwise 

Now there is one update-step for the whole map 
but the actual update still is a sequential process 
because every unit influences its neighburs. As 
every input should have the same influence on the 
map, there are certain restrictions for a(s) (see [I]) 
to compensate this drawback. 

THE NEW ALGORITHM 

From teaching to learning: The new algorithm 
mainly gives a different view on the learning 
process. The algorithms mentioned above both 
share two main features: 
1) Learning remains even after Bertsch's 
modifications a highly sequential task because each 
unit has to be updated one after the other. 
2) During adap- 
tation of a unit 
to new input 
values, 'teaches' the unit or -1 
forces the units 
in its topolo- ( h d 1 
gical neigh- Fig. 1 
bourhood to 
adapt to the 
new input (Fig.la). This means that, for one 
complete update of the map, the internal state of 



each neurone has to be changed repeatedly. 
However, it is possible that each unit learns from 
its neighbours (Fig.lb). From Fig.2 you can see 
that the neighbourhood, the unit learns from, is the 

same as it 
used to teach. 

in the neu- 
rone's internal 

Fig. 2 allow a very 

high degree of 
parallelization but also takes the restrictions from 
a(s) because the weights of the input vectors are 
not influenced by it. 

The algorithm: The steps of the proposed 
algorithm are almost identical to Bertsch. Only step 
7 is slightly modified: 

Step 7: Update every aieA according to (3). 

where 

Here a($) still is a slowly decreasing function of 
time. As the update of the whole map occurs 
simultaneously there are no restrictions for a(s) 
like there are in Bertsch's algorithm. 

Reasons: Every state ai(s+l) is determined by the 
sj(s) and cj(s) of its neighbourhood (see Fig.2). For 
simplicity reasons we will now assume, that every 

neighbour of ai has the same influence. This leads 
us to (5). 

where N equals the number of units in N(aJ and 
mj(s) is the mean value of all vj(s) (see (6)) 

Some transformations later we get (7) and (8) 

C mks) 
ads+ 1) =a,(s)(l - a(s)) +a (s) W(a3 0 

N 

As we don't want every neighbouring unit having 
the same weight but being weighted corresponding 
to its c ,  we use (4) instead of the term that 
represents the mean value. 
'We can easily extend this model by adjustable 
weights to satisfy other demands, e.g. to introduce 
a neighbourhood interaction function (9) [3] instead 
of a neighbourhood interaction set. 

DISCUSSION 

Parnllelization: Finding the best match for every 
veV is an inherently sequential task. Still it could 
be done by several processors in parallel. The 



following update of the map had to be done strictly PI Lo 2-P., Bavarian B. (1991) On the rate of convergence . 
sequential caused by the interference of the units in topology preserving neural networks. Biologial 

with neighbouring units. This serious drawback has Cybernetics 65, Springer Verlag 1991, pp 55-63 

been removed' Now the 'pdate of each unit can be 141 Ritter H., Schulten K (1988) Convergence Properties of 
done simultaneously. Kohonen's Topology Conserving Maps: Fluctuations, 
Regrettably we do not have the hardware to use all Stability and Dimension Selection. Biological 

the new features of the algorithm but we found it Cybernetics 60, Springer Verlag 1988, pp 59-71 

extremly helpful for the implementation in our 
APLprototyping environment. 

Flexibility: The algorithm is highly flexible 
regarding the neighbourhood interaction. There are 
several possibilities to define the neighbourhood, 
the neighbourhood inter-action function and the 
mean value of the neighbouring units. As we are 
doing image segmentation, we found formula (7) 
extremly helpful, because we are not interested in 
the probability density distribution function of V 
but in the different objects. By using (7) we have 
unified all pixels of large objects in one instead of 
several units. 

Speed: As mentioned above we do not have 
parallel hardware so the algorithm was running 
only two to four times faster, depending on the 
implementation and hardware environment. 

Conclusion: The new algorithm has several 
advantages compared to Kohonen's and Bertsch's 
as mentioned above. However the optimal a@)- 
function and the optimal neighbourhood selection, 
to assure conver-gence of the map, are still 
unsolved problems. 
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