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Abstract

In this study, we explore the domain of orthogonal
transforms,  in order to bring an understanding on the
characterization of image features, with emphasis placed on the
Karhunen-Loeve (K-L) transform for its optimal energy packing
properties. The study's contribution is in establishing a thorough
research base that relates the eigensystem and transform domain
properties of the K-L transform to two-dimensional image features,
Other transformations such as Haar, Hadamard, Walsh, Fourier,
and the discrete cosine transform (DCT) are presented as a basis for
performance evaluation in the energy packing sense. The main
thrust of this study, given the transform domain, is to determine
mechanisms and develop algorithms relevant to the understanding
and discrimination of visual features invariant across translation,
orientation, gray-level polanty reversal, and size. The
computational requirements are addressed.

Introduction

The Karhunen-Loeve (K-L) transform is recognized as the
optimum transformation in the sense that it packs the most energy
into its first few transform coefficients as it minimizes the mean
square error between the original image and its corresponding
reconstructed image from a smaller set of uncorrelated transformed
data, This is an important feature for data compression. Also, K-L
transform yields feawres most desirable for the development of
algorithms that are invariant across orientation and translation.
However, it has always been dismissed for its computational
complexity due to the fact that the eigensystem need to be evaluated
requiring the computation of large inverse transformations. This is
compounded by the fact that no fast algorithm can be implemented
for such a transformation. For this reason, an implementation of
the Household method to trnidiagonalize the covanance matrix in
order to expedite the finding of the eigensystem is proposed. As it
will be made clear, the drawback of computational complexity
should be reassessed for all the advantages provided by the K-L
transform.

The focus is placed on the understanding of the relational
principles that exist between image features and their subsequent
change due o rotation, translation and other variations with respect
1o the noted effect resulting in the transform domain. Some of the
visual features understanding algorithms developed in this study
draw from the work by Hubel and Wiesel on "the visual cortex and
the seeing of feawres” [1,2]. An analysis is provided relating the
results obtained on the transform domain o image features in
context with the effect of edge lines with different orientations,
positions, and other morphological properties. The preliminary
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results obtained for this particular problem constitute but a simple
first step of what may be a fundamental problem in vision, that of
bringing some credence to the belief that transformations may be
involved in the important issues of size constancy and orientation-
independence.

A unified mathematical framework is provided to relate in
a simple way all of the orthogonal transforms. It is then easier to
perform comparative studies, and characterize uniquely each one of
the transform in their energy packing sense, as well as in their
responses (o image features and properties. Certain mathematical
fundamentals such as the eigensystem, the covariance matrix, the
correlation matrix, and other statistical parameters are exploited for
optimized visual features interpretation and understanding,
Throughout this study, all computer implementations are assessed
by means of their performance in relation to the computational
requirement, and in their effectiveness to visual features
understanding.

Orthogonal Transforms Mathematical Framework

The orthogonality principle of transforms and the
separability of the wansform kemels are best understood
considering the following mathematical framework:

A matrix M as described below:

is said to be unitary if (M7) =M, where (M7) is the
If M is a real matrix, then M 1s an

M=[v,’ V. Vi, ]T.

conjugate transpose of M.

orthogonal matrix such that M™ = M~ These type of orthogonal
matrices satisfy the following conditions:
ifi=#j

0 0
vy, = o, and v v =
o ete ifi=j Lok ere

The transformations used in image processing are in
general orthogonal transformations which yield transform elements
that are highly decorrelated. The orthogonality property is what
allows us to avoid the burden of computing the inverse
transformation.

ifi#]
ifi=j

As an illustration, recall that the discrete Fourier transform
(DFT), can be wrilten as:



J2 l{u x)

Flu,v)=— Ee
where u,v=0,1,-- N -1
thus, F(u,v) can be written in matrix form as:

Fu,v) =k, (x.u)- f(x.9)k, (y,v)"

_dtmdvy)
[Zf(x,y)e ¥ }

where k_r (y.v)'r denotes the transpose conjugate of the forward

kemel, kf (y,v). Such is the case of complex transformations like

the Fourier transform. For real orthogonal transforms, the general
formulation for the transformation operation can be written as:

T(“'v) = k!(x,u)-f(x.y)‘k;(y,v)r
Using the same principles, the inverse transformation
operation can be written as:

£Ox,y) =k, (x.0)- T(u,v) -k (y,v)"
where k, = k7' = k7; fix, y) can be written as
F(xy)=ky () T(u,v) -k, (y,v)
note that k,(y,v) and k,(x,u) are functionally equal.
2-D Image and Relevant Statistical Descriptors

If we consider a two-dimensional (2-D) image X, then the
covariance matrix of X is defined as:

1 2 2

0.II 0.Il Gln

2 2 2

E _|% Oz O
2 2 2

Gnl oni e cnn

where the variance elements are given by:

=—-[ )-(row, ) ]—(M;m)(”hmJT

and the mean values are given by:

1 =l
M., =_'£"U
n =0

Xy being the elements of X. The correlation matrix is defined as:

1 n ha

|ru|Sl

where,
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An elaborate study of these statistical descriptors is given in [3-5).

It is noted that the covariance matrix is real and
symmetric. It is the symmetry property that is exploited in using
the Householder method, as will be shown later, in order to expedite
the finding of the eigensystem.

Application of the Karhunen-Loeve Transform (KLT)

Like other transforms, the K-L is an orthogonal transform
but statistical in nature. That is, it performs a statistical analysis on
the variation in the image data. Considering an n x n input image
X, the KL transform can be derived as:

y=A(X-m x}
where A is the matrix composed of eigenvectors of the covariance
matrix of X, and m, denotes the mean vector of X found by
averaging the values of each row. It can be shown that the
covariance matrix of y can be computed as;

C,=A-CyA"
C, is a matrix whose elements are zero except along the main
diagonal where the values are the eigenvalues of Cy. Since Gy and
Cy have the same eigenvalues, Cy and Cy will have the same
eigenvectors. Using the orthogonal property of the eigenvectors, A

=AT itis possible to reconstruct input image from the transform

as follows:

X=A"-y+m,
This inverse transformation is a one-to-one mapping (lossless
transformation) if we preserve all the eigenvectors. However, for
data compression purposes, if’ we take into account only the energy
from the first k eigenvectors that correspond to the first & highest
cigenvalues, then the KLT can be expressed as follows:

Y =4 -(X—mx)
where Ay is composed of the first k eigenvectors and both A and y
are of a k x n dimension. The lossy reconstruction is thus:

X, =A:'."t+’"x

where AI and i* are of n x n dimension.

Application of the Householder Method

The Householder method reduces an n x n real and
symmetric matrix 10 a tridiagonal matrix using (n-2) Hermitian
(X™ = X) wansformations [6]. Since input images are not
necessarily symmetric, a real and symmetric covariance matrix of
the input image is first determined before the Householder method
is used. The iterative process of the Householder method
annihilates the required part of a whole column and whole
corresponding row for each iteration. Consider an n x n real and
symmetric matrix X such that:

, where r=
X, =T"X ., wh 1,2,-,n=2
The 7{") matrix is the Householder matrix defined as:



T = [-2. W W, where

w" =g {{)1_.“‘(}',1}"")" } where

_ 1
\[5( 52+sign(x,+1}-5)'

the variables 0y, -, Op denote the inseried zeroes at the rth
iteration, The vector y consists of the element from (r+1) to n of
row r, and

where §° = .t,z,,, +(_‘Fr : )')

Vi =x, , +sign(x)-S
X, 1s the b row of matrix X. The whole process of tridiagonalizing
an n x n matrix through Householder method requires H, operations

|7], where H, 1s given as follows:

Hﬂ

Once tndiagonalization 1s achieved, the eigensystem can
be computed more efficiently through the use of QL algorithm with
implicit shift given in [8].

%-(;;-2}-(2«’ +7-n+27)

Computational Aspects

Below is a timing comparison of the computational
requirements of an n x # matrix between standard evaluation of the
determinant and using the Householder method.

Standard Method

The determinant of a 2 x 2 matrix is:

=ty Ay —apcay

a4y dpn

This requires 2 (mults) and 1 (add/sub) operations that is,
0,=¢,=2:(M)+1:(A)

Similarly, for a 3 x 3 matrix, we find:

ay -cof[a, ] - a,, - cof[a, |+ a,, - cof[a,,]

where coffagi] is the co-factor of a;; element. This co-factor
requires (), operations. Thus, the number of operations required to
compute the determinant of a 3 x 3 matrix is:

0,=3(g,)+3-(M)+2:(A)
For a 4 x 4 matrix, then:
0, =4[3-(g,)+3-(M)+2-(A)]+4-(M) +3-(A)

operations are required. The number of operations required
compute determinant of a 5 x 5 matrix is:

0, =5-[4-[3-(g,)+3-(M)+2-(4)]
+4-(M)+3:(A)]+5-(M)+4-(A)

As we can see that if the order of the matrix increases, so does the
number of operations. For an n x n matrix, the number of
operations required 1s in the order of n/.
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Householder Method

After tridiagonalization, the evaluation of the determinant
of a 3 x 3 Householder matrix is as follows:

a, Cof[an ] ~yt Cof[au]
This requires:
0,=2:(0,)+2-(M)+1-(A) =2-(g,) +&, =3-€,
Similarly, for a 4 x 4 matrix, it is determined that:
0,=2[3-(e,)] +&, =5-¢,

Thus, by induction, for an n x n matrix, the number of operations
required to compute the determinant of a tridiagonalized matrix is:

0,=(2"-1)-¢,
Below is a table on the timing analysis in computing the
determinant of an n x n matrix: H, denotes the amount of
computations required for the tridiagonalization process.

size | H, |det(H,) | H, +det(H,) | Standard det
2 9 3 6

4 | 58 21 79 Y
42 | 381 803 40320

16 | 3038 | 196605 199643 2.1+10"

Image Features and the Transform Domain

Energy Conservation

In this section, a comparison of several orthogonal
transforms 1s given in function of the energy distribution. The
transforms given are: Discrete Cosine Transform (DCT), Discrete
Fourier Transform (DFT), Haar Transform (HaT), Hadamard
Transform (HT), Walsh Transform (WT), and Karhunen-Loeve
Transform (KLT). Figure 1 illustrates the ways this energy is
packed by the different orthogonal transforms. Figures 1(a) and
1(b) illustrate the case where variances of rows and columns of the

given image are all the same ((.‘r'fI| = ¢, where i=1,..k, and j=1,...k),

and the case where an abrupt change exists between any two pixels,
respectively. The transformations used in Figure 1 take the form:

[T(uv)] = 0% [k, Ry K, ]

noting that the covariance matrix Iy = o? . Ry, where "‘f is the
forward transform kernel.

Observation: The energy of a scene containing two objects is
equivalent to the sum of the energies of the two objects.

Eigenvalues Energy
1 1 3 . ] . 1 ] K
Object | el T o o 0 0 0| amm
| Object2 308 | 11097 | 336 | o [ 0 [ 0| somo0l
Object 143 | Sa88% | 2050 | 11041 | 4328 | 2608 | 0 o [
where E; denotes the total energy of the transforms obtained from the eigenvalues,



Effect of Orlentation

Observation 1: Regardless of the orientation of an object, if the
contour of the object is not affected by the onentation, the K-L
transform yields the same eigensystem and the same energy.

Observation 2: Any amount of object information hidden due o
the effect of orientation is reflected proportionally in K-L transform
domain.

Below is a table reflecting a constant eigensystem and
energy conservation for an object that is rotated at different angles.

1 2 3 4 ] L 7 L] B
Scene-1 13343 | 3417 ) 1633 | 10081 ] 721 | S90S | SM o 21664
Scrne- |, rolated $0° 1303 | M417] 1633 [ 10081 | T80 | 508 | SM o 21894
Scene-1, rolsied 180% 13343 | 4417 | 1633 | 10081 | T | 5905 | M L] 21694
Scene- 1, rotated 0" T3 | 417 | 1633 [ 10081 | T30 | 5905 | S [] 21694

where E; denotes the total energy of the transforms obtained from the eigenvalues.

Size Const
Observation: It is noted that a change in size of an object is
reflected proportionally in the energy of the K-L transform domain.
Eigenvalues Energ
Olject stze 1 1 A 4 5 L] 7 L EI
5, 485350 | 34850 o 0 o ) o 50200 |
5,=28, B&A280 | 176120 a L] 1] ] [ |
5,38, [i211600] 349000 0 0 [ [ 0 |%

where E; denotes the total energy of the transforms obtained from the cigenvalues.

Effect of Translation:

Observation 1:
background has no effect on the K-L transform domain,
eigensystem and the energy remain constant.

Translation of an object on a homogeneous
The

Observation 2: An image containing an object in translation on a
homogeneous background with respect (o a stationary object, would
yield a transform domain where the eigensysiem may be different
but with the same amount of energy, unless there is an overlap
between the objects. The difference in the eigensysiem is function
of the way the covariance matrix is computed (row wise vs, column
wise), and the placement of these objects in the scene.

Eigenvalues Energy
1 1 A 4 L} ) ? L] ﬂl
Object | WS | 4008 1] o o a 1] o [1]
Obfect 1T | 308 | 4305 1] o 1] 0 o 0 )

where E; denotes the total energy of the transforms obtained from the eigeavalues.

=LEY

Observation: A change from a positive image (0 a negative image
of the same scene yields no change in the eigensystem as well as in
the energy.

Conclusion

The results presented in this study were obtained using
various synthetic and real images. The Houscholder method
improved significanly the processing time of the K-L transform
from the order of n/ computations w the order of (2" - 1)
computations in finding the eigensystem of large matrices. Various
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aspect of the image features were accessed in terms of the
eigensystem and other statistical descriptors. Such type of analysis
leads effectively to the development of algorithms that are invariant
across translation, rotation, and reversal of gray-level polarity.
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Figure 1. Energy packing feature of transforms





