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Abstract the following way: 

This paper is devoted to a new deterministic and massively paral- 
lel alnorithm for combinatorial o~timization in a Markov Random 
F i e l i  First, tbe a posteriori of a tentative labeling, Now, let R ~ M  A be defined by: 
defined in terms of a Markov Random Field is generalized to 
continuous labelings. This merit function of probagilistic vectors 
is then convexified by changing its domain. Global optimiza- 
tion is performed, and the maximum is tracked down while the 
original donlain is restaured. We analyse in details the parallel 
implementation of this algorithm on the CM2, in terms of speed 
efficiency, memory and communication requirements. Compari- 
son with other classical algorithms is made on a contextual pixel 
classification problem. 

1 Introduction 
Since the seminal paper of Geman [6], Markov Random Fields 
(M.R.F.) many heuristic algorithms have been proposed for find- 
ing the Maximum a Posteriori Mode (M.A.P.) in low-level vision 
problems: iterated conditional modes [2], simulated annealing [6], 
dynamic programming [4] etc . . . 

Starting from Relaxation Labeling [5],  we have proposed in 
a recent paper [S] a Deterministic Pseudo Annealing (D.P.A.) 
algorithm, a variation on annealing. The basic idea is to extend 
the probability of a labeling (a function defined on a discrete 
set) to a merit function defined on continuous labelings (a subset 
of 'RN): a polynomial with non-negative coefficients. The only 
extrema of this function, under suitable constraints, occur for 
discrete labelings. D.P.A. consists of changing the constraints so 
as to convexify this function, find its unique global maximum, 
and then track down the solution, by a continuation method, 
until the original constraints are restored, and a discrete labeling 
can be obtained. 

We describe here the parallelization and an implementation on 
the Connection Machine, with an application to pixel quantiza- 
tion. 

2 Deterministic-Pseudo-Annealing : 
the Method 

In this section, we present briefly DPA algorithm (see [a] for more 
details). Let S = Si, 1 5 i 5 N be a set of sites (pixels in this 
paper), each of which may take any label from 1 to M. A global 
discrete labeling L assigns one label Li to each site S,. 

We assume that the a priori probability of L is modeled by a 
M.R.F. Let Y = (yl . . . y ~ ) ~  be the vector of observations on the 
sites. Using reasonable independance hypotheses on the noise, 
the a posteriori  roba ability P(L/Y) (using Bayes theorem) fol- 
lows a Gibbs distribution, with the same associated graph G. 

Let V,  be the set of sites connected to S,, in G. C is the set of 
all the cliques c of G. Also C, = {c : S, E c). The number of sites 
in the clique is its degree : deg(c), and deg(G) = maxCec deg(c). 

Let LC be the restriction of L to the sites of c,and WcL the 
clique potential for c E C and L E L (L is the set of the M N  
discrete labelings). Following Hammersley-Clifford, W,L is pro- 
portional to a joint probability on c. The M.A.P. can be cast in 

where c, denotes the jt%ite of clique c, and l,, the label assigned 
to this site by I,. f is a polynomial in the zi,kls, linear with any 
x,,k; its degree is deg(G). 

Let us now restrict X to PNM, defined by V i ,  k : xi,k 2 
0 & Vi  : c E ~  z i , ~  = 1. It turns out that, generically, if 
X' is a critical point of f on PNM then it is on the border, i.e.: 
Vi,  3k : z:& = 1, and thus it directly yields a discrete label- 
ing. Thus, the absolute maximum of f (which has many local 
maxima) yields the solution to our problem. 

Now, let QNMvd be the compact subset of RNM defined by: 

V i ,  k : z,.k 2 0 & Vi  : C z t k  = l 

It can be proven that f admits a unique maximum on QNM.d. 
When d = 2 and N = 1, this reduces to Perron-Frobenius theo- 
rem on non-negative matrices. 

Maximization is performed, starting from some X O ,  by apply- 
ing: 

This simply means that, at each iteration, we select on the 
pseudo-sphere of degree d the point where the normal is parallel 
to the gradient o f f .  When d = 2, this is the well known iterative 
power method for finding eigenvectors. Obviously, the only stable 
point is singular, and thus is the maximum we are looking for. We 
have only proved experimentally that the algorithm does converge 
very fast to this maximum. 

This procedure, already suggested in (11 yields a maximum 
which, as in the case d = 2, is inside QNM-d (degeneracies apart), 
and thus does not yield a discrete labeling. So we actually track 
down the solution, maximizing f on successive QNM*O's, with f l  
decreasing from d to 1, starting from the last maximum. 

This iterative decrease of f l  can be compared, up to a point 
to a cooling schedule, or better to a Graduated Non-Convexity 
strategy [3]. It also shares some common flavor with mean-field 
approximation [9]. 

Obviously, this scheme is not necessarily optimal (simple coun- 
terexamples can be designed), but a very good solution is usually 
reached on real problems. 

Besides, let us notice that, though shifting the coefficients does 
not change the discrete problem nor the maximization ~roblem 
on PNM, it changes it on QNMsd, and thus there is no guarantee 
that the same so!ution is reached. 

Finally, experiments have shown that the speed with which f l  
is decreased is not crucial : typically, 5 to 10 steps are enough to 
go from 2 to 1. 



3 An Application to Image Segmen- 
tation 

The problem at hand here is to quantize an image in such a way 
that areas with a given gray level are nicely connected. So we 
expect isolated pixels, or small isolated areas with a grey level 
different from their context to be eliminated. Here, the units (or 
sites) are the pixels, and the classes (or labels) are the quantized 
grey-levels (typically 2 to 5). The result will be a segmented 
image into 2 to  5 classes. 

The World Model (cliques of order 2) favours similar classes for 
neighbouring pixels, and penalizes different labels. For example, 
if two neighbouring sites have the same label, the energy is 0, else 
it is -1. This actually means that the ratio between the a priori 
probability of having the same labels, to the a priori probability 
of having different labels is ezp(1) (i.e. approx. 2.7). 

We have used test images of miscellaneous types. In this pa- 
per just two are presented. The first one is a mineral image 
(512*512*8). A result is shown in Figure 2 for 5 classes seg- 
mentation. The second one is an indoor scene (512*512*8). A 
result is shown in Figure 3 for 5 classes. In both cases, the val- 
ues of center classes are 0. a, 2a, 3a, 4a where a = 63.75 and with 
a = a/2. 

The other example is a synthesized (128*128*8) noisy chess- 
board, obtained by corrupting a binary picture by noise with a 
-5dB noise (Figure 4). It is used to illustrate comparison with 
other methods to segment image in two classes. The challenger 
methods are : mean and median filtering, anisotropic diffusion 
filtering (71 and Graduated Non Convexity (or GNC) [3]. The 
range of the computational complexity of these methods is al- 
ready quite large, although we have not compared our method 
with the heaviest method, simulated annealing, on this applica- 
tion. For every method, parameters are optimized to obtain the 
best result (window range, iteration, thresholding, etc ... ). In 
our method, the class mean values are 0 and 255 with a = 255. 

The first three methods are implemented in C on a-Sun 4 work- 
station and the fourth in *Lisp on the CM. 

The performances are established in two ways : 

r a) objective performances essentially based on the correct 
classification (Figure 1). 

r b) subjective performances based on degradation of visual 
aspect, as shown in Image 3 where just best relaxation and 
GNC results are presented. 

DPA algorithm has the best of objective and subjective perfor- 
mance. It took 69 iterations and 0.8 seconds on the Connection 
Machine. For mean filtering, the best objective performance is 
obtained with window size 3x3 but subjectively, a 9x9 window 
looks better. The discussion is similar for median filtering. In 
both cases, the result is obtained in a few seconds with a Sun 4 
station. Anisotropic diffusion results are obtained in a few min- 
utes with a Sun 4. To wind up, GNC best result also on Image 3 
asked 250 iterations and 10 seconds on the Connection Machine. 

For objective performance in Figure 1, three indicators were 
defined for two classes, the win, alert and error ratios, as follows : 

win = Numbev of  white  pire lrc lasscdwhitr  
Number of input tuhitcptncl, 

= Number o l w h t r a p i r c l ~  clas,ad black 
Number o j tnpv t  v h a l e p ~ r e l ,  

error = Number oJ ini t ia l ly  black p,rd,cloa,cd white  
Nvmbcr o j  ,nltnolly blockptrel, 

The results may then be summarized as follows : 

average and median filtering lead to poorer results, but they 
are very simple algorithms, 

r anisotropic filtering gives intermediate results for intermedi- 
ate complexity 

r GNC, which is the most complex method, and the present 
relaxation algorithm, win the challenge and obtain similar 
results. The relaxation turns out to be faster and slightly 
more performant on the present example. It offers the best 
trade-off between performance and complexity. 

Considering subjective performance analysis, choice is much 
more difficult. Anyway, it appears that even with a very simple 
method like smoothing with average, subjective result remains 
satisfactory. Choice will then depend on the application. 

4 Algorithm implementation 

4.1 Parameters for parallelization 
Many parameters may be tuned in the algorithm. We have tested 
the following : 

picture dimensions and number C of classes 

r pixel neighbourhood (4 or 8) 

r stabilization threshold t l  and stop test thresbold t2 on the 
number of non stabilized hypotheses ( t l=  0.1 or 0.001, and 
t2= 0.1 percent of all the hypotheses or 0 percent) 

r initial labeling from pixel intensity values (discontinuous ini- 
tialization law using thresholds, or continuous linear or gaus- 
sian laws) 

local rule for neigbours interactions, defined in a local in- 
teraction matrix identical for all the pixels in the geometry 
(identity matrix, with or without coupling terms, interclass 
reinforcement, or inhibition ) 

r extraction of final result from equilibrium coefficients values 
may be continuous or threshold based. From theory, and 
confirmed by experiment, equilibrium values for hypotheses 
are close to 1 or 0 and pixel class is chosen without ambiguity. 

Then, the whole process may be continuous, from input picture 
to classified pixels, with gaussian initial labeling law and contin- 
uous class extraction (particularly with a final B of one). 

We have analysed different aspects of our implementation : 
noise sensibility and comparison with some other classical meth- 
ods of segmentation, convergency behavior, influence of initial 
labelling law and of local interaction rules, iteration speed. 

4.2 Parallel implementation and Paralleliza- 
tion Performance 

The Connection Machine CM2 is used for the execution of D.P.A. 
algorithm, with possibly one or two sequencers on site (8192 or 
16384 one-bit processors connected on a hypercube network). 
Programming level is C/Paris, akin to assembler. The plain 
parallel algorithm formulation suggests a parallelization by in- 
spection. Allocating one machine site to every pixel leads to 
regular and local data exchanges between sites and identical'site 
computation, at once the same load and operations. D.P.A. al- 
gorithm actually well fits the machine in SIMD processing mode 
and NEWS communication mode for transfer. Load balance can 
be predicted, with speedup only bounded by the communication 
delays and Communication Computation Ratio. 

In the general case, C labels ought to be associated to every 
pixel (floating numbers comprised between 0 and 1). The next 
label value in pixel i is computed from K connected pixels or 
neighbours labels (here north, south, east and west of pixel i 
in the image). All data concerning pixel i is mapped in one 
processor, as shown in Figure 5, and the resulting amount of 
memory needed for every pixel in this implementation is: M = 



B + 3 C F  + K C F  + K C 2 F  = 1 + 12C + 4KC + 4KC2 bytes. If 
the number D x D of pixels is greater than the number P of CM2 
processors, each processor will successively manage vpr pixels: 

vpr = D x D I P  if integer, or int((D x D I P )  + 1) if not. 
For Chessboard shown in Figure 4, D x D = 128 x 128 pixels, 

with 2 classes, the 4 NEWS neighbours, and P = 8192 processors, 
vpr is 2, the memory required is 242 bytes per processor, and the 
total CM2 memory used approaches 2 Megabytes. It increases as 
K, DZ and C2. 

The D.P.A. includes two main parts. The first one initializes la- 
bels from the image loaded. The second one, iterative relaxation 
process, has 4 phases: label diffusion, label accumulation, vector 
label normalization and a check stop condition. After these two 
parts, thresholding can be applied for classification improvement 
(decision part). 

From the execution times recorded for different images, ini- 
tialization roughly consumes one iteration duration. If used, the 
decision part is faster because requiring no transfer. Thus the 
approximate formula T = N x + tiniti.li,e stands for the 
duration of N iterations. Measured with one sequencer, the mean 
iteration timeis approximately linear versus the number of classes 
and the image size: 

t ,,,,.,. -- 0.01 x g x (&)2 (in s,on&) 
In order to evaluate the actual parallelization perfonnauce, ef- 

ficiency and speed-up gained, the particular analysis of the list of 
the transfer and processing operations involved in one iteration 
can be conducted. Associated with CM2 Instruction Times, as 
obtained from the Technical Manual for vpr 1 and vpr 16, the 
list leads to an evaluation of the D.P.A. execution time, parallel 
efficiency, and speed-up. 
For one iteration (four procedure calls), the following amount of 
operations is found (D x D image, P processors and K x P com- 
munication links, the ntoperot,on"~ are some parallel operations 
drawn from the PARIS Parallel Instruction Set of the CM2) : 

1. P x t i,.t. = D ( D  - 1)CK x ttr.n.frr, communication 
of neighbour labels, 

2. P x t.,,,,r.t. = D2C(2tm,rt,p~y + ( K C  - l)tmuit.dd), accumu- 
lation of influences, 

3. P x tnormmrize = D2((C + I)tpme, + Ctdivide + (C - I)t,,,jd), 
normalization of label vector 

4. Pxtcompa,e = D2C(t,ub,t,mct+tnegate+tgveate~thon)+tgreotevfhan~ 
checking the stop condition, 

and t2,,,, = tcom,,ni,,t, +toccvmu~ote+tn~ma~ire +tcompare = tp. 
Then, t ,,,,,, I.,, grows as C 2  and the other durations as C. 

With only one processor, and no need for transfers on the hyper- 
cube, this would have become: 
titcrate = P X toccumu~ate + P X tnormsiize + P X tcornpa~c = P X tl 

Parallelization efficiency is then defined as: 

E = - - + X ' -  S eedU - P x t  t r  - - 1 =1 
- t +  l + k y -  l+C 

Coefficient e is a function of K, C, and D, and some CM2 
execution times extracted from PARIS Manual. Using vpr 1 Time 
Table in the Manual, which means D2 5 P ,  with K = 4 and 
C = 2, leads to the following issues (times in pseconds): 

experimental issues obtained from various images. Considering 
also the model prediction of the efficiency, related to processing 
speed-up gained from parallelization, it only depends for a given 
image size on the number of classes specified. For vpr 1: 

5 Conclusion 
In this paper, a new deterministic algorithm for combinatorial 
optimization in MRF is presented. We insist on the implemen- 
tation point of view on a massively parallel architecture. The 
parallelization on the CM of the regular scheme for data transfer 
and accumulation drawn from the algorithm formulation is effi- 
cient, as could be a priori supposed. Efficiency, as determined 
from the evaluation of the amount of necessary communications, 
lies from 75 to 85 percent. It should be emphasized that a 80 per- 
cent efficiency ratio means a 6554 processors equivalent machine 
(1638 CM processors 'wasted' among the 8192 processors used). 
Then, the large amount of processing units in the CM leads to an 
important loss of equivalent processors for even small efficiency 
decrements. Any improvement in communication speed results 
in better use of actual processing resources. 
The execution time of the algorithm is relatively small. For pic- 
ture Desk (512 x 512), using 8192 CM processors, 5 classes re- 
laxation, and 0.1 percent stop threshold, one initialization step 
and 22 iterations are needed, i.e. almost 0.37 + 0.313 * 22 = 7.26 
seconds; this time becomes 2.2 seconds for 2 classes. For syn- 
thetic picture (128x128) Chessboard, 10 iterations i.e. .1 seconds 
are needed The execution time could be lowered using the fact 
that diagonal local matrix proved usually efficient which allows 
to reduce the number of floating operations in the program. 
Concerning the basic algorithm performance for picture segmen- 
tation, it has been pointed out that the initial labelling should 
be determined from a preliminary picture analysis, from pixel in- 
tensity repartition analysis for instance. Also, n-class relaxation 
using moving centers for automatic scan of the whole pixel inten- 
sity interval should be considered. 
These and many other algorithm adaptations are left to further 
study. 
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Figure 4: Visual comparison 

Figure 3: The effect of D.P.A. application to an indoor scene (512x512 pixels, between G.N.C and D.P.A. 
256 grey levels) 
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Figure 5: Data area for one pixel (Firld sizes: B= 8 bits and F= 32 bits) 
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