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Abstract 

The main goal of sequence analysis is the motion 
estimation of moving objects which are present in 
the scene. One of the most important approaches for 
motion estimation is based on the estimation of an 
approximated projection of 3D motion on the image 
plane, which is usually called optical flow. The col- 
lection in time of these optical flows can be useful 
to understand the object structure and behavior. In 
this paper, the problem of counting people by inter- 
preting optical flow fields in space and time is pre- 
sented. Experimental results of counting people who 
are going inlout of a public bus are reported. 

1 Introduction 

One of the most important approaches for motion 
estimation is based on the estimation of an approxi- 
mated projection of 3D motion on the image plane, 
which is usually called optical flow [I], [2], [3], [4]. 

The gradient-based approach for optical flow es- 
timation ~rovides solutions to this problem starting 
from the observation of brightness changes in the im: 
age plane [I], [6], [7], [8], [9], [lo]. The optical flow, 
in general, differs from the perspective projection of 
the 3-D motion on the image plane which is usually 
called "velocity field" or "motion field" [ l l ] ,  [2], [4]. 
However, the estimation of an approximate velocity 
field, such as the optical flow, can be very useful for 
many applications. 

The estimation of motion is a typical problem of 
short term analysis. On the other hand, the long 
term analysis can be made collecting the results ob- 
tained in time with short term techniques. Typi- 
cal problems of long term analysis are: the object 
tracking and predict position, motion understanding, 
recognition by motion [ 5 ] .  

In this paper the long-term problem of counting 
people is analyzed. Specifically, experimental results 
are presented for the problem of determining the 
number of people who are going inlout of a pub- 
lic bus. In this case, shapes in the image frames, 
which represent bodies of moving people, cannot be 
regarded as rigid objects. Moreover, due the position 
of the inspecting camera, these are typically not fully 
focused and exceeds the image boundaries. For these 
reasons, matching-based techniques for motion anal- 
ysis cannot be profitably used. In order to  overcome 

the above referred problems, optical flow estimation 
is used in the paper to  determine the local velocity 
field on the image plane. An interpretation of the o p  
tical flow fields in time and space is hence performed 
to count people. 

The paper is organized as follows: in Section 2, 
the fundamentals of the gradient-based approach for 
optical flow estimation are reported. In Section 3, 
the solutions adopted for optical flow estimation, are 
presented. In Section 4, the method for interpret- 
ing the optical flow field in order t o  count the people 
which pass under the video camera is proposed. Con- 
clusions are drawn in Section 5. 

2 Gradient-Based Approach 

Most of the motion estimation techniques pre- 
sented in the literature to  evaluate the optical flow 
use an equation called Optical Flow Constraint 
(OFC). The definition of the OFC derives from the 
observation that the changes in the image brightness 
E(x(t), y(t) , t)  with respect t o  t ,  can be denoted by: 

If the image brightness of each point in the image is 
supposed to be stationary with respect to  the time 
variable (i.e., dE/dt = 0), then the following expres- 
sion holds: 

where the abbreviation for partial derivatives of the 
image brightness has been introduced, and u,  v corre- 
spond to dcldt ,  dyldt, and represent the components 
of the local velocity vector V along the x and y di- 
rections, respectively. 

A more general motion constraint equation was 
reported by Schunck in [12] and called Extended Op- 
tical Flow Constraint (EOFC) in [lo]: 

BE 
V . (EV)  + - = 0, 

a t  

where: 

Equation (3) can be rewritten as: 



3 Two Solutions for Optical Flow Es- 
timation 

A derivation for the EOFC was presented by Nagel 
in [2] choosing the same path as Schunck [13], [14]. 
Nagel's derivation was based on the fact that the 1o- 
cal image irradiance can be considered, in first ap- 
proximation, as the density in the image brightness 
features. The EOFC equation (5) differs from the 
OFC equation (2) only in the term involving the di- 
vergence of the optical flow field vector (EV e V).  
If the EOFC is supposed to be the true expression 
of the optical flow field, OFC can be considered valid 
only in the region where the divergence of the optical 
flow field is equal to  zero. 

In general, the optical flow estimation suffers from 
two main problems. The first consists in the presence 
of discontinuities in the local velocity, related to im- 
age brightness discontinuities which are originated by 
the presence noise, too crisp patterns on the moving 
object surfaces, occlusions between moving objects, 
and too fast object velocities with respect to the sys- 
tem of measure. Generally speaking, this difficulty 
can be overcome (or simply attenuated) convolving 
the image with a 2-D or 3-D Gaussian smoothing 
operator. 

The second is the so-called "problem of aperture" 
which is also present in the human vision. This is 
related t o  the impossibility to  recover univocally the 
direction of motion if the object is observed through 
an aperture which is smaller than the object size. 
In this context, the references of the object under 
observation (such as textures - e.g., patterns) are not 
enough to perceive the transversal component of the 
object motion, and only the component of apparent 
velocity which is parallel to  V E  can be detected. 

In the literature, two main approaches for optical 
flow estimation can be identified: the regularization- 
and the multiconstraint-based approaches. 

The regularization-based approaches consider op- 
tical flow estimation as an ill-posed problem. Solu- 
tions are obtained minimizing a functional where a 
smoothness constraint is appropriately weighted to 
regularize the solution. The functional is minimized 
by using calculus of variations, and leads to define 
iterative solutions [I], [6 ] ,  [15]. 

The multiconstraint-based approaches to optical 
flow estimation are based on the observation that 
the condition dF/d t  = 0 can be made valid for any 
motion-invariant function F such as contrast, en- 
tropy, curvature, gradient magnitude, etc. By us- 
ing a set of these constraints, which are evaluated 
at the same point in the image, a solvable system 
of equations, with u and v as unknowns, can be ob- 
tained [16], [17]. Other methods derive constraint 
equations by using the first and second derivatives 
of OFC or EOFC with respect to  x ,  y and t [7], [8], 
[9], [lo]. These multiconstraint-based approaches are 
solved with traditional numerical methods for the in- 
version or pseudo-inversion of the coefficient matrix. 

Considering that the optical flow changes follow 
a law which is approximatively linear, a smoothed 
solution for the optical flow estimation can be de- 
rived from a linear approximation of the adopted 
constraint equation in the neighborhood of the point 
under consideration [18], [lo]. This assumption is 
valid only if the optical flow field under observation 
is smooth. In this way, a set of similar constraints in 
the neighborhood of a pixel yields an over-determined 
system of equations. This approach is called "multi- 
point". 

A multipoint solution based on the EOFC ( 5 ) ,  as 
well as on the OFC (2), can be easily obtained. Nu- 
merical solutions can be obtained in the discrete do- 
main, since images are sampled on a fixed grid of 
points a t  a regular time interval. Thus an image at 
time t is the collection of the irradiance measures 
E(i j , t )  for i = 1, ..M, and j = 1, ..M along x- and 
y-axes, respectively. On this path, for the estimation 
of velocity components of the pixel under considera- 
tion an over-determined system of N x N constraint 
equations, where N is the dimension of the image 
segment side of the neighboring pixels, is defined in 
both cases. 

In the case in which the constraint equation is the 
OFC, the system is formed by taking the following 
equations for all (i, j )  in an N x N neighborhood of 
the estimation point: 

Since the equation is OFC, the over-determined sys- 
tem has 2 unknowns, and N must be grater than 2. 

If the constraint is the EOFC, it should be noted 
that in the EOFC equation there are 2 unknowns (u,, 
v y )  which are linearly dependent on each other since 
they have the same coefficient E. Thus the adopted 
constraint equation is: 

and has been used to build an over-determined linear 
system of N x N equations (6) in 3 unknowns (u, v, 
V.V) on N x N neighboring pixels (with N 2 2). The 
system is formed by taking the following equations 
for all (i, j )  in an N x N neighborhood of: 

Both the presented over-determined systems of 
equations have been solved by using a least-squares 
technique. 

In the above techniques, a large N will had 
to smooth optical flow estimations. Furthermore, 
adopting large values for N leads to  loss in reeolu- 
tion in the estimation of velocities. Therefore, the 
proposed methods can be used safely only when the 
velocity field is smooth in an N x N neighborhood, 
otherwise inaccurate results will be obtained. 

Selection between OFC or EOFC equation mainly 
depend on the problem context (illumination sources, 



type of motion, surface reflectance ... ) [4]. There- 
fore, the choice should be made depending on the 
specific problem. 

3.1 Computational complexity 

Both multipoint solutions presented above can be 
regarded as a three phase process. The first phase 
addresses the estimation of constraint equations coef- 
ficients (e.g., E,, Ey , Et). The second phase regards 
the transformation of the over-determined system of 
N x N equations on n unknowns in an equivalent and 
determined system of n equations in n unknowns by 
using the least-squares technique. In the third phase 
the equivalent system of equations is solved to p r e  
duce the optical flow components. 

The explicit complexity for the presented multi- 
point solutions can be expressed by: 

where: n is the number of the unknowns (2 for the 
OFC-based solution and 3 for the EOFC-based solu- 
tion); M is the image dimension in pixels; G is the 
distance in pixels between two estimations point (i.e., 
the resolution); N is the dimension of the area side 
used for the estimation; and where the symbol [ x ]  
is the greatest integer number smaller than x .  The 
first term (3M2), take into account the estimation 
of the partial derivatives E,, Ey , and Et of the im- 
age brightness; the second term is due to the least- 
squares technique, and to the method for solving the 
final system of equations with a LU decomposition 
(n3). 

The asymptotical complexity of (7) is: 

if n < N ~ .  This affirmation is always true since in 
our cases n is 2 or 3 (for the OFC- and EOFC-based 
solution, respectively) and N must be greater than 2 
to define an over-determined system of equations. 

If the dimension of the image area used for op- 
tical flow estimation, N ,  and the distance between 
spatially consecutive estimation point, G,  are equals 
then the segments of estimation are tiled. On the 
contrary, if G < N there is overlapping among the 
estimation areas which are close to each other. 

The computational cost in term of number of float- 
ing point operations is reported in the following. This 
is useful in order to evaluate the computational power 
which is required to perform optical flow estimation 
in real-time - i.e., at  videurate frequency, 25 frames 
for second. 

In total the number of floating point operations 
for the OFC-based solution (n = 2) is: 

and for the EOFC-based solution (n = 3) is: 

Table 1: Millions of floating point operations 
(MFLOP), with G = 1, N = 5, for different image 
dimensions. 

Table 2: Millions of floating point operation for sec- 
ond (MFLOPS), with G = 1 and N = 5, for different 
image size. 

In Tab.1 the number of floating point operations, 
expressed in millions, for the estimation of an optical 
flow field with G = 1, and N = 5 as a function of 
the dimension of the image is reported. In this case, 
( M  - 2)2 velocity vectors a t  each time interval are 
estimated. 

By observing Tab.2 can be seen that the com- 
putational requirements for the OFC-based solution 
are about 112 than the EOFC-based solution. These 
figures make possible to implement both these algo- 
rithms by using commercial processors with a float- 
ing point unit such as Motorola 96000, Intel i860, etc. 
provided that the image size is not large. In addition 
the number of MFLOPS should be divided at least 
by G2 if it is not required to estimate a velocity vec- 
tor for every pixel but only every G pixels, in both x 
and y direction. 

The obtainable speed-up obtained by porting 
these algorithms on a parallel architecture with a 
single processor for each pixel is about M 2  (SIMD 
architecture). In this case, the power that is needed 
for each processor is very low. Under the hypothesis 
of N = 5, G = 1 in Tab.3 the number of FLOPS 
which must be executed for each PE to satisfy the 
real-time estimation constraint are reported. 

It should be noted that according to the charac- 
teristics of the algorithm the number of FLOPS that 
each PE must execute are quite independent from 
the dimension of the image if the condition "one PE 
for each pixel is satisfied". 

Table 3: FLOPS/PE - Number of FLOPS which 
must be executed for each PE (FLOPSIPE) to es- 
timate optical flow a t  real-time with G = 1 e N = 5. 
pSec./FLOP - execution time for a floating point op- 
eration on each PE of a SIMD parallel architecture. 

pSec./FLOP 
82 
149 

Algorithm 
EOFC-based 
OFC-based 

FLOPSIPE 
12150 
6675 



Figure 1: Sequence of images where a person is going 
into a bus (frames: 2, 10, 18, 26) (image resolution: 
128 x 128). 

4 Interpreting Optical Flow Fields in 
Time 

The control of the number of people which are go- 
ing into or out of some place is of interest in many 
applications. In museums, for example, it can be 
used to limit the number of people in certain areas. 
Controlling the number of people is also of interest 
for public services, as buses, in order to be able to 
properly schedule the frequence of service depending 
on the requirements. In many cases, to solve this 
problem mechanical systems, such as rotating tripod 
gates, and short iron doors. Unfortunately, these 
methods are not recommended where the velocity of 
people flowing in the entrance is high. This is what 
usually occur a t  the exit of many public places and 
when the people catch the bus where is not possi- 
ble to place mechanical gates, since they produce a 
slowing down in the flow, which could be the cause 
of accidents. 

The experimental results reported below refer to 
the case of counting people who are going into or out 
of a public bus. Two TV-cameras are placed just 
a t  the entrance of the bus over the stair steps, one 
camera for each lane, being the entrance divided by a 
metallic barrier. Images grabbed by the camera rep- 
resent forms, belonging to the passing people, who 
are not completely in focus. In the sequence anal- 
ysis the people have several distinct behaviors such 
as: entering or leaving the bus from the same door, 
stopping or swinging under the TV-camera, crowd- 
ing conditions in which distinct people are very close 
each other under the TV-camera. A typical sequence 
presented in Fig.1 shows a person which is going into 
the bus. 

Experiments reported in the following have been 
performed by using the EOFC-based solution. An 
optical flow field estimated by using the multipoint 

Figure 2: Optical flow fields estimated from the se- 
quence of images presented in Fig.1 by using the 
EOFC-based solution with G = 1 and N = 5 (frame: 

EOFC-based solution on the sequence of Fig.1 is re- 
ported in Fig.2. The estimated optical flow shows 
that the identification of the shape of the moving 
person is not immediately detectable. This is mainly 
due to the fact that the body of the person is not 
completely in focus for the TV-camera. In addition 
the moving object is not rigid and its parts are mov- 
ing with different velocities. 

Problems that must be solved are: separation be- 
tween distinct people who are close each other (this 
is what usually happened in the peak hours); recog- 
nizing the situations in which people remain for some 
reason motionless under the TV-camera; discerning 
from the people which are going into the bus with 
respect to those that are going out the bus. 

In a sequence of optical flow estimations the ve- 
locity in a point i, j, at the time t is Vi,,,t with com- 
ponents ui,j,t, and vi,j,t. Considering that the flow 
of the people is only along the direction of the y- 
axis with respect to the image plane, the informa- 
tion related to the motion is only contained in the 
component ~ i , j , ~  of the optical flow ViBjBt. Thus, the 
spatio-temporal reasoning analyzes a moving object 
flow under the TV-camera only along the y-axis. A 
measure of flow can be obtained diving into s hori- 
zontal segments the optical flow field and estimating 
one velocity vector for each segment (see Fig.3): 

for j = l...s, where h is the number of optical flow 
vectors which are present in each row of the full 
optical flow field (i.e., h = [(M - 2 ) / q 2 )  (26 in 
the optical flow fields presented in Fig.2), and s is 
the number of optical flow vectors along the y-axis 
( S  = [(M - 2)/G12). In some cases, a smoother o p  
tical flow can be computed taking into account more 
that one row for each estimation of uj:*. 

To obtain more robust estimations In the presence 
of discontinuities due to noise and deformations, the 



Figure 3: Optical flow field segments in the image 
plane a t  time t. 

Figure 4: Spatio-temporal behavior of fijVr. 

velocity estimated in each segment has been averaged 
also in time, by using three consecutive optical flow 
fields. Thus, the segment velocity is obtained as: 

In Fig.4 the spatio-temporal behavior (frames 3 - 
187) of the smoothed velocity component 6jjt along 
the y-axis is reported. In this surface it can be ob- 
served that the hill around the frame 30 corresponds 
to a person which is going into the bus. Analogously 
the negative hill around the frame 150 is due to a 
person that is going of out the bus. In Fig.5 a slice 
of the surface of Fig.4 is reported. From this curve 
the presence of a t  least three in-going and one out- 
going passengers can be recognized, around the 30th, 
71st, IlOth, and 140th frame, respectively. 

An important issue is to detect when the mov- 
ing object enters or leaves the view area of the TV- 
camera. This can be useful to avoid the possibility 
of a wrong count when a person after being entered 
inside the area remains in the area motionless for 
several frames. To this end, it is useful to detect the 
boundaries of the optical flow fields. This can be 
done by using the derivative of the field with respect 
to the direction of motion. In this case the derivative 
of the smoothed velocity component CjVi with respect 
to the y-axis can be estimated as: 

Figure 5: Temporal behavior of iijtt, for j = 12. 

Figure 6: Motion profile for the frames 54-57, fijtt,, . 

By using this information and the velocity of seg- 
ments (for j = l...s) is possible to  detect the in- 
put/output of people in the view area and the direc- 
tion of their motion. This mechanism can be seen, 
by observing the surface presented in Fig.4 a t  each 
frame time. In fact in this case the profile of the 
velocity of a moving person is depicted in Fig.6 for 
frames 54-57 of the sample sequence. This type of 
motion profile has been also used to solve the situ- 
ations in which the people are strongly connected, 
since in these cases the   at tern  resents a minimun. 

The computational cost for interpreting the opti- 
cal flow fields in time in order to count the moving 
people is composed of the costs of: the estimation 
bf the velocity vector for each segment from the en- 
tire optical flow field; the temporal averaging of the 
segment velocities, fijPt ; the estimation of the deriva- 
tives, Ci ; and the reasoning to evaluate the count- ' Y 

ing. In general the trend of asymptotical complexity 
of interpretation is M2/G2. For this reason it can be 
neglected with respect to the complexity of optical 
flow estimation O ( M ' N ~ ~ ~ / G ~ ) .  

5 Conclusions 

In this paper an optical flow technique has been 
proposed to solve the problem of counting people 
who are going inlout of controlled places. Computa- 
tional requirements of two distinct solutions for op- 
tical flow estimation have been analyzed in order to 
verify the possibility of a real-time implementation 
on low-cost processors. Experimental results have 
been presented for the problem of counting people 
who get on/off a public bus. 
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