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Abstract

This paper describes a new algorithm to find the
contour of a moving object. A distinctive feature
of this algorithm exists in its bottom-up architec-
ture throughout low-level and intermediate-level( mid-
level) processes. In our algorithm, first a complete
set of dimensionless spatio-temporal measures are
derived to provide low-level constraints on varying
brightness. Then, based on the self and neighbor-
ing consistency among these measures, candidate re-
gions of the contour are bounded through spatial re-
laxation operations. Finally in the mid-level process,
these low-level measures in the candidate regions are
combined with mid-level constraints on spatial and
temporal continuity of moving boundaries. This in-
corporation is made through a newly proposed dimen-
sionless regularization procedure over the trajectory
of the moving boundary. We examine the efficiency
of this algorithm through several experiments on real
NTSC motion pictures with dynamic background and
natural textures.

I. Introduction

A typical approach for boundary detection and segmentation
in image sequences firstly estimates the optical flow field and
secondly detects the flow discontinuities. Thompson[1] es-
timated the optical flow field through establishing the cor-
respondence relations between feature points of two consec-
utive frames. After smoothing the flow field with a Gaus
sian, he located its discontinuities using a Laplacian opera-
tor. Schunck([3] proposed a similar algorithm using a different
method of optical flow field determination. Thompson’s early
work[5] deals with a method in which velocity and inteusity in-
formation is combined based on a clustering algorithin. But all
these approaches share some intrinsic difficulties. First, since
changes of brightness are caused by accretion and deletion in-
stead of motion near the occluding boundaries, definition of
velocity itselfl is violated there, thus the information produced
on these regions becomes not only meaningless but also harm-
ful to the entire algorithm. Second, local information alone
is usually insufficient to determine a flow field especially in
regions where spatial changes of intensities are small.

To overcome this problem, Mutch[6] attempted to make
use of accretion and deletion for occluding boundary detec
tion. She interpreted a missing correspondence as a token
of accretion/deletion, and determined motion boundaries by
connecting the positions of them. But a clear difficulty of this
work is the requirements of densely locating tokens which is
hardly realizable in practical situations. The active contour
model called “Snakes’ was also applied to this problem([8]. Al-

*He was a student of Tokyo Engineering University and participated
in the group of Matsushita for this research. Currently he works for
Graphtec Corp.

though it conld locate precise contours in a static image with
simple textures[7], its effectiveness to real world pictures with
complicated textures and numerons contour candidates has
not been confirmed.

In this paper, we try to provide an essential solution to
this problem. The salient characteristic of our algorithm is
its bottom-up abstracting architecture. In this architecture,
both low-level constraints involved in brightness changes and
mid-level constraints on geometry and dynamics of the mov-
ing boundaries build np. in a step-by-step manner, a logically
consistent contour throngh relaxation and regularization pro
cedures appropriate for each level of constraint. This pro
vides us with flexibility in designing procedures to extract
features and to incorporate them in each stage so that they
can reflect corresponding constraints most appropriately. In
order that features extracted independently in the different
levels can be incorporated consistently in the regularization
procedures, these features must be so designed that each one
expresses a normalized measure and is free from any physi
cal dimensions which lead to dependence on spatio-temporal
resolutions, gray-level amplitude and so on. This property
provides a drastic improvement in the algorithmic robustness
against changes in physical nature of motion pictures.

In the low-level process of our algorithm described in Sec-
tion I11, classification measures of spatio-temporal image func-
tions are extracted locally to reflect physical constraints on
brightness. By using those measures, we can restrict possi-
ble (interpretable without contradiction) regions of contour.
Before proceeding to the mid-level process, the possible areas
are further narrowed to some extent based on the neighboring
consistency between measures, through a relaxation proce-
dure. In the mid-level process described in Section 1V, these
measures of positions included in remaining possible areas are
incorporated through regularization over the surface which is
the trajectory of the object boundary in spatio-temporal 3D
space. One criterion for this optimization is the image mea-
sures mentioned above, and the other is the smoothness mea-
sure of the surface which is reflections of mid-level constraints
bounding both shapes and dynamiecs of moving contour. In
Section V, we examine the efficiency of this algorithm through
several experiments on real NTSC motion pictures with dy-
namic background and natural textures.
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Figure 1: Coordinates for contour patch.
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II. Problem Framework

Suppose a boundary of a closed image region in which no mo-
tion discontinuity exists. We call a trajectory surface of it in
aryt space as motion contour. A goal of our algorithm is to
find and describe a smooth segment of the motion contour,
i.e., a contour patch. Then, how the contour patch including
its smoothness is described? Here we have three problems:
1) The contour patch considered in this paper is too wide
and too bent to be described by a single valued scaler height
function[13). 2) A coordinate system for deseribing the con-
tour patch (contour coordinate) must be fixed before search-
ing it although its precise position is unknown. 3) Smooth-
ness measures of the contour patch should be invariant with
the inaccuracy of the contour coordinate for the consistency
and stability of the results. To answer these problems, we
consider three kinds of coordinate discussed in the following
subsections:

A. Surface coordinate

Let AV be a true contour patch and x = (z,y,1) be a point
on AV. AV is described by grids constructed by an instan-
taneous contour, i.e., s axis, and some boundary point loci,
i.e., vaxis. From the assumption of a continuous motion field,
there exists a rectangular region Al of (s,v) and a bijective
map @ 1 AU — AV such that (s, v) = x. Actually, finding
All and (s, v) is a final goal of our algorithm.

B. Reference coordinate

A shape of the contour can be determined by locating sul-
ficient number of points on the contour. A way to specify
the points is to construct a reference coordinate near the true
contour patch and draw perpendiculars from each mesh points
so that they intersect the contour. Reference coordinate (5,7)
and a corresponding bijective map @(8,7) = x are determined
in this paper by a roughly estimated grid in a candidate region
of contour established by a low-level process. For an always
visible boundary, we obtain AU as a rectangular region. Al/
is equal to Al’ in our algorithm.

C. Smoothness coordinate

Since the interval of the (&, ) grid is not only variant by mo-
tion but also noisy because of uncertainty of low-level pro-
cesses, it is inappropriate to define the smoothness measure
of motion contour on it, Instead, we introduce a new coor-
dinate system (s',¢') to evaluate the smoothness. (s',0') is
defined only locally at each point on the surface. The direc-
tion of (&', v') axes are equal to the tangent of the boundary
and the motion vector defined by

v = (vs,1y.1) (1)
where (v, v, ) is the velocity of the nearest internal point. The
units of (s',v') axes are taken identically 10 that of r,y axis
and t axis respectively. Let x'(s’,v') express a point on AV
in this coodinate.

II1. A low-level process: from image field
to logical constraints

This section describes the low-level process in which possi-
ble regions for a contour are bounded step-hy-step based on
spatio-temporal classification measures. A particular empha-
sis is placed on its abstraction capability for the following
regularization process.

A. What is the problem in regularization?

Although regularization has been implemented in many early
vision systems[11] for determining tokens such as edges|[2], op-
tical flow[4, 9], and smooth curves[10], as well as surfaces[13],
they still suffer following serious difficulties:

1) Limited choice of an energy function — criteria based
on intensity or its gradients used in conventional implementa-
tions are insufficient to make use of various knowledges con-
tained in images. This often results in the involvement of
unwanted regions such as discontinuities in the regularization
which causes not only inprecision[4] but also enormous com-
putation cost [10].

2) Physical dimension of the criteria energy functions
derived from quantities with physical dimensions suffer incon-
sistency problems in the incorporation process under some
changes of observing conditions such as intensity resolution
and spatio-temporal resolutions of iuput pictures(2, 4, 9, 10,
13).

In order to avoid the above mentioned problems, the low-
level process proposed by us is designed in such a way to play
the following roles:

1) Local but complete classification of an image field
This allows us to classify. including aperture problems, local
pixels according to its consistency with boundary interpreta-
tion, then bound without any risk a candidate region of the
boundary. This provides robustness and reduced computation
in regularization.

2) Dimensionless features for classification and regulariza-
tion — This means that any quantities including criteria are
independent with any changes of physical conditions such as
varying intensity and resolution under unstable condition of
objects. This will also mean that the realized integration is
not physical but logical.

In order to realize these functions, we introduce normalized
dimensionless measures, which have been originally proposed
by Ando[14, 15].

B. A complete set of image field classification mea-
sures

Suppose a local covariance matrix of the spatio-temporal in-
tensity gradients is defined as

Sik :jfjrfJ[.r.y.!}fk(;r.y.f]d:dydt

where I' is a neighborhood area around a point (z,y,1), and
Lo Je € {Ses Jus fi}- Since features of intensity changes can be
described by the dimensional property of its distribution, we
can use covariances of intensity gradients to classify pixels.

(2)

[Measures for spatial changes]

Measures to classily spatial variation are introduced, which
have been developed in the literature[14].

[Spatial variation measure]

(Sez + Syy)?

= 3
V= Bt Syt 02 (3)
[Directional /Non-directional variation measure]
Sex = Syy)" + 487
Bl ) > (4)

(Ser + Syy)? + o

Spatial variation measure Py features rapid spatial changes
of intensity regardless of the dimensional property of the varia-
tion. Directional/Non-directional variation measure F; reacts
il the intensity changes quickly in one direction, i.e., for the 1
D distribution of spatial intensity gradients. a? is added for
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noise suppression. If noises are caused only by the quantiza-
tion, we can set a? to 0.5 x I,

[Measures for temporal changes]

Measures to classify temporal intensity changes are presented.
The validity and the derivation of these measures will be pre-
sented somewhere later in detail. For reference see Ando[15].

Temporal intensity changes are divided into classes based
on the causes of changes, namely, whether they are due purely
to motions, or accretions/deletions of points.
[Two-dimensional accretion(deletion)/motion measure]
4det[S]

Py = —— - - -
- (SrrSyy — ‘5;2—1, + 2a,2)(Su + 0/%)

(5)

Two-dimensional accretion(deletion)/motion measure dis-
criminates local regions in image field where spatial changes
are two-dimensional, on whether their temporal intensity
changes are caused by quick accretion/deletion. i.e., 3D dis
tribution of spatio-temporal intensity gradients or motion of
pixels, i.e., 2D distribution.

[One-dimensional accretion(deletion)/motion measure|

S.rr- '” = b‘fl

- (Ser + a5 ) (S + o)

Py (6)

One-dimensional accretion(deletion)/motion measure fea-
tures accretion(deletion ) or motion in local regions where spa-
tial intensity changes are one-dimensional, i.e., intensities of
pixels changes in one particular direction.

C. Clustering and bounding candidate regions

Pixels are divided into 8 classes listed in Table 1, based on
the relations between measures derived for each pixel. This is
a local classification based simply on dimensional properties
of spatial and temporal intensity changes of each pixel. The
flow of classification procedure can be represented by a binary
search tree, shown in Figure 2, in which T;(1 = 0,1,2.3.4) are
constants for thresholding.

Table 1: Classes based on low-level measures.

S0_FIX I No texture and no brightness change
| S0_CHG No taxture and brightness change
S1_FiX | 1D texture and no brightness change
S1_AGR| 1D texture and inconsistent motion
S1_MOT| 1D texture and consiskent mobon

S2 FIX | 20 texture and no brightness change
§2_ACR| 20 texture and inconsistent motion
S§2_MOT| 20 texture and consisient mobon

PI<TO

P2<72

[si_rix ](Cra<ta ) [sz2_rix](Cracta )

|s1_uo‘r Ilsuu;n ] ]32_»‘07[

Figure 2: Binary search tree for classification.

S 2_ACR

Further classification are made on pixels of which first clas-
sification are not conclusive, i.e., which are SO_FIX, S0_CHG,
S1FIX,S1_MOT. S1_ACR (other classes are called conclusive
classes ), based on the consistencies between classes in neigh-
boring regions in image field. The results of this second classi-
fication describe whether neighbors around a concerning pixel
are involved inside motion regions(S-MOT). boundaries or
centers of rotation(S_ACR), stable regions(S_F'1X), or such re-
gions impossible to interpret as neighboring intensity changes
of pixels do not have any logical consistencies(OTHERS). This
second classification is realized through a spatial relaxation
algorithm. The local rules for the iterative-improvement em-
ployed in this relaxation are based on the relations between
the current class given to the concerning pixel and the ratio
of conclusive classes involved in its neighbors. See Appendix
A. The region which consists of a set of points labeled S_.ACR
is the candidate region ) for the contour.

IV. A mid-level process: incorporating
different level constraints to a contour

Under an assumption of natural motion of an object, the
smoothness is generally supported about trajectories of
boundary points. Although the smoothness of boundary de-
pends on the object shape, possible application of this algo-
rithm in near future validates the assumption of the simplicity
of the objective contour. These two assure the smoothness of
the contour patch in both s and ¢ directions. In this sec-
tion, we define a mid-level measure for describing smoothness
of the motion contour, and present a method to incorporate
low-level and mid-level measures,

A. Extracting a smoothness measure for a contour
patch

As a smoothness measure R of the motion contour, we define
on (&', v') coordinate a dimensionless function

= €,(x) -
R(x]_r,(x}+a;" (7)
of an inhomogeneous quadratic variation
ax' * o OBxt Ve
e(x) = {04|ﬁ§| + ?"'|W| + |‘a-|3| botany=c00)  (8)

where a? is a term for noise suppression. ¢, is a derivation
from a newly extended quadratic variation for a surface de-
fined in (x,y.t) coordinate.

The quadratic variation

92z

(B;r"’

. 8z 3%z
!2+2{ﬂ}2+(d ) (9)

drd dy*
was originally employed by Grimson[13] to measure the
smoothness of a scaler depth function = = f(r.y). He
also showed its invariance with translation and rotation in
ay plane, and discussed analytically and empirically the su-
periority of this measure to other differential geometrical
measures[12].

The basic validity to employ e, for contour patch AV is
supported by the equivalency between ¢ defined below and
a quadratic variation for a certain depth function expressing
the contour patch AV in the smoothness coordinate (See Ap-
pendix B).

5 e
a*x' a*x!

+|m| +I§!—§‘| (10)

Since the definition of ¢! is halfly direct with (r,y,f) coordi-
nate and halfly parametric with (&, ¢") coordinate, it is com-
putationally easy to evaluate.
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Parameter a which is introduced in ¢, also plays a signif-
icant role for the validity of e, as well. As described in the
introduction to this section, though the smoothness of contour
patch AV in the direction of v' axis is supported by physical
principals, the assumption of smoothness in the direction of
s' axis relies simply on the smoothness of the outline curve.
This means that unlike in Grimson's case, we should take
into account the directional property in designing smoothness
measures for the contour patch AV, Therefore, in order to
realize this aspect as well as that described in Section 11, i.e.,
normalizing measures, we must insert o in ¢/, so that the ex-
tended quadratic variation can be used for surfaces which have
orientation in smoothness and it may have a consistent phys-
ical dimension as well. For the derivatives and the validity of
R(x) in detail, see Appendix B.

B. Incorporating low-level and mid-level measures
through regularization

In this section, possible interpretations of intensity changes
obtained in the low-level process are incorporated with mid-
level constraints on the surface smoothness to determine a
contour. Integration is made over a contour patch in reference
coordinate through regularization. The energy function to be
minimized is shown in (11), where )\; are weights.

4
E=-Y ME,+E,

(11)

The first term is the penalty functional, which is defined as
a combination of integrals of low-level classification measures
over the contour patch AV, each of which being specified in

(12).

Ep(#) = Mﬂ Pi(p(3,))dsdi (12)

(1€ {1,2,3,4})

where P,(z,y,t) is a real function of (z,y,1), which esti-
mates the classification measure P; at point (z,y,!) in spatio-
temporal space. P3, Py returns 0 if the spatial intensity change
at (z,y,1) does not have corresponding dimensional property,
i.e., two-dimensional for Py, one-dimensional for Py. The tar-
get of energy minimization in regularization can be bounded
to the region D which is derived as the possible candidate for
contours.

The second term is the stabilizer which constraints the
smoothness of the contour patch to be recovered. It is de-
fined as the integration of the smoothness measure R over the
range AU. As already described, the smoothness measure R
is defined at each position on the contour patch and its com-
putation is implemented in the local smoothness coordinate,
Thus, the stabilizer integrates the smoothness measure esti-
mated in the local system, over a global surface expressed by
a reference coordinate system. In the detection of energy min
imization, since unlike the smoothness coordinate established
on each candidate contour patch, the reference system is an
absolute system which is objective for any candidate contour
patchs, the validity of the establishment of coordinates for
describing optimization process is clearly supported.

V. Experimental results

This section shows some experimental results of contour de-
tection on real NTSC video pictures. In order to minimize
the energy function (11), we have developed a new hierarchi-
cal graph search algorithm. The details of this algorithm will
be presented in a succeeding paper.

A. Experiment 1

Results are shown on pictures with dynamic background and
complicated textures. In this picture, the background is trans-
lating leftward by 1 ~ 2(pix) per frame interval, which is
caused by the camera’s motion, and, at the same time, a
person is translating leftward by 0.5 ~ 1(pix) relatively to
the background. Figure 3(a) shows the results of local clas-
sification based on the classification measures. Parameters
To, Ty, Ty, Ts, Ty used for thresholding in the binary search are
set respectively to 0.5, 25, 0.125, 0.5, 0.25. Figure 3(b) shows
the results of second classification. The scope of integration I'
in (2) is 5(pix) x 5(pix) x 2(time-interval). a,?, 0,%,0* were
all set to 40 x 25 x 2. Figure 3(c) shows the candidate region
D for a contour of the person’s area. The approximation of
the contour used for & coordinate, which is shown in Figure
3(d), was derived through a search of the inner boundary of
the candidate region for a contour. In Figure 3(e), the contour
segments extracted through our algorithm were overlaid over
the source image, without any adjustments between neigh-
boring segments on their terminals. Al was taken as 10(8)
% T(1), & was set to 0.7, 0% was set to 10, and weights in
energy function were set respectively Ay = 0, A;=2.0, A3=5.0,
Ay = 2.0. These values were chosen empirically. From Figure
3(e), we can make sure that the contour was exactly detected
by our algorithm.

S_ACR
S_MOT

@

Figure 3: Extracting motion contour from dynamic back-
ground.
The size of the picture is 180(pix)x 120(pix), and intensity resolu-

tion is 256 level,

B. Experiment 2

In this experiment, a contour of a moving region in which
pixels do not have consistent velocities is detected.

The source picture has 4 times as high resolution as that
used in the first experiment. In this picture, the whole field
is slowly being magnified by the zooming operation of the
camera, and, at the same time, the right hand with a racket
is rotating around the right shoulder. The displacement of
pixels around the racket area is around 2 ~ 3(pix) per frame
interval, while that around the shoulder is about 0.5 ~ 1(pix),
thus the velocity field does not have a consistent velocity, As
the average magnitude of the optical velocity in the hand plus
racket area doubles that of person’s area extracted in the first
experiment, the sampling frequency in time of this picture can
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be approximately regarded as hall of that of the picture used

in the first experiment.

ization was proposed, and it was examined that our feature

extraction is quite appropriate for regularization.

Figure 4(a) shows the results of local classification of pixels.

The area I' as well as the parameter a,,a,,a, for noise sup
pression and parameters T,(t = 0,1,2,3,4) for thresholding
were all set to the same as those in the first experiment. Re-
sults of second classification are shown in Figure 4(b). Figure
4(c) shows the candidate region D for the contour of a mov
ing region which consists of the right arm with the racket.
The approximation of the contour used for & coordinate is de
rived in the same way as that in the first experiment, which
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Appendix

A. Flow of relaxation

In Figure 5, label(i) is a class label which is currently given
to pixel i, and mot(i), emg(i), fix(i) are the numbers of pixels
in the neighbors around i, of which current class labels are
S.MOT, S_LEMG, S_FIX respectively, and N is the size of the

neighboring regions.

B. Derivation of smoothness measure ¢,

In Figure 6, let 7;; be a plane spanned by a smoothness coor-
dinate at x(38, 7). From the definition, an origin of this plane is
Po = x'(0,0), and x'(és', 6v') is a position of Py of which &', v’
coordinate is (6s',81"). Let P; denote a point on 74 such that
Py Py is perpendicular to m4;. Then, a length of Py P; defines
a scaler function & of és',8v', and its quadratic \r'ﬁl‘]d.[l(lll is

defined as
w0 9% 9% ,
s = l‘ )+ ’3’]‘”6*3 (13)
Here, we find a following lemma holds:
[lemma 1]
% d*x' o ) 5
[Bkk | = Iml- i,j €{1, 2} kik; € {0} (14)

where | - | denotes the norm of a vector. This lemma assures
that ¢} defined in (10) is equivalent to ”. Introducing a scale
transformation s” = as' to maintain a consistent dimension
as well as the compatible smoothness between &' and v axis,
we obtain a final form of the measure (13) in (8).

Applying a similar procedure for (3), a normalized dimen-
sionless smoothness measure for contour patch AV is then
derived from (8).

procedure relaxation ()
(
for each pxel | |

case : label(i)=52_FIX
label(i) =5 _FIX;

case. label(i)=52_ACR
label(i)=5_ACR;

case: label(i}=S2_MOT
label(i).=S_MOT;

do {
c=0,
for each pixel | |
case: label()=S0_FIX of label(i}=S1_FIX
case: fix(()=0 and fix(i}>=mot(i) and fix(i)>=emg(i)
label(i)=S_FIX, c++. break;
case: mot((i}>N/3 and mot(i)>=fix(i) and mot(ij>=emg(i)
label(i):=S_MOT, c++, break;
case: acr(i)>N/3 and acr(ij>=fix(i) and acr(i)>=mot(i)
label(l):=S_ACR; c++; break;
case. label(i}=S1_MOT
case. motfi)>0 and mot(i)>=acr(i)
label(i) =S_MOT, c++, break,
case: acr(i)>N/3 and acr(i)>mol(j)
label(i)=S_ACR; c++; break;
case. labal(i}=S1_ACRH .
case: acr(i)>0 or (fix(i)>0 and mot(i)>0)
label(i)=S_ACR; c++; break;
detault: break;
]
) while(c>0);
for sach pixel i (
it (label(i}=51_FIX or label(i}=S1_MOT or label{i}=S1_ACR} {
label(i)=OTHERS;
]
}
}

Figure 5: Flow of relaxation described in C-like code.

Figure 6: Local function £ expressing the contour patch AV

in smoothness coordinate &', ¢
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