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Abstract 
Our robot is equipped with a trinocular vision system 
that has been put into hardware and delivers 3D maps 
of the environment at a rate between 1 and 5Hz. Those 
3D maps contain line segments extracted from the im- 
ages and reconstructed in three dimensions. This vision 
machine is heavily used in our laboratory, and our navi- 
gation system uses the 3D segments it produces to com- 
pute the free space around our mobile robot, locate the 
obstacles and plan a safe trajectory. 

1 Introduction 
Two years ago, before the availability of that vision 
machine, we published a paper [BFZSO] describing our 
work on obstacle avoidance and trajectory planning for 
a mobile robot using stereo vision. Since then, we have 
developed a complete navigation system that uses the 
principles described in that paper, but we have consid- 
erably improved our previous results. We have now a 
running demonstration of our mobile robot exploring a 
room in order to reach an arbitrary goal while locating 
and avoiding obstacles. At each step, each time a new 
3D map has been obtained, a ground floor 2D map of the 
explored space is updated, and a trajectory is planned 
either to go to the goal if a safe route exists, or to ex- 
plore unknown areas of the room if no such route could 
be found. 

To this end, we project the 3D segments coming from 
the vision machine on the ground, merge them with the 
previous ones in order to remove redundant information 
and update the ground floor map. We then compute a 
tesselation, more precisely a Constrained Delaunay tri- 
angulation (CDT) of this map using the endpoints of 
the 2D segments and then determine the free space by 
erasing the triangles that do not contain any obstacles 
(a very simple processing). These parts have been de- 
scribed in [BFZSO]. 

Then, using that triangulation as a graph, we can plan 
a safe trajectory, move the robot and iterate the process. 

In this short paper we will just recall previous results 
and detail the way we use the Constrained Delaunay 
triangulation as a support for the trajectory generation. 

One main feature of our system is that the knowledge 
of its originally unknown environment can be updated 
very quickly each time a new set of data is available. 
Projecting the 3D segments on the ground, merging 
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Figure 1: Architecture of our navigation system. 

them with the existing 2D map, updating the Delaunay 
triangulation, re-computing the free space and planning 
a safe trajectory, all this takes about 4 seconds on a 
Sparc station and less than 1 sec on a Sparc2. This per- 
formance is possible because of the dynamic properties 
of each part of our navigation system. We use a very 
recent algorithm for computing the Delaunay triangu- 
lation and we propose an original utilization of a well 
known algorithm for constraining the set of segments so 
that they become edges of the triangulation. 

2 Computing the free space and 
locating the obstacles 

2.1 What method we shall use ? 

We have a 2D map made of line segments. The inter- 
pretation of this map is not an easy task, it is hard to 
recognize the free space and the shape of the obstacles 
in front of the robot. An intermediate representation is 
necessary. 



Like [FLMBSO], we propose to use a Constrained De- 
launay Triangulation. The reason of our choice are de- 
tailed in [BFZ92], and can be summarized like this: 
r It gives a regular tesselation of the space. It has 

been proved that the Delaunay Triangulation and the 
Constrained Delaunay Triangulation are the best tri- 
angulations for surface approximation [Llo77, SHa78, 
Kli801. 

r From this tesselation we can obtain a polygonal ap- 
proximation of the obstacles [LM89, FLMBSO]. 

r The Delaunay triangulation is the dual of the Voronoi 
diagram. The latter has been heavily used in robotics 
as a support for trajectory planning, and we will show 
in this paper that the triangles can be used too. 

r It can be computed dynamically in a very efficient 
way. 
The reader is invited to look at [Aurgl] for a survey 

of the Delaunay Triangulations and Voronoi diagrams, 
[Flo88] for a survey of Constrained Delaunay Triangu- 
lations. 

2.2 Computing dynamically a Con- 
strained Delaunay Triangulation ( 
a CDT) of the set of segments 

The 2D map we maintain represents what the robot has 
seen so far. Each time a new set of segment is available, 
we don't want to compute the CDT of all the segments. 
To update quickly the CDT we need a dynamic treat- 
ment: some segments must be added and some must be 
removed. Unfortunately, the first dynamic algorithms 
that can maintain a CDT directly have been published 
in August 1992 [WT92, TCK921, too late! We started 
our work two years ago! 

Instead of designing a new dynamic algorithm from 
scratch, we choosed a two step method: we dynamised 
the static algorithm of [FLMBSO] that adds points on 
the segments so that the standard Delaunay triangula- 
tion computed on the set of points (extremities of the 
original segments and added points) includes all the seg- 
ments as edges of the triangulation. This dynamisation 
was rather easy because it appeared that when a seg- 
ment is added or removed, only a local treatment is nec- 
essary, due to the following properties: 
r s = (P, Q) will be a Delaunay edge if the circle of 

diameter P Q  does not intersect any other segment. 
r The two segments si = (Pi, Qi) and s j  = (Pi, Qj) 

which have a point in common will be delaunay edges 
if the circle passing through P;, Q;, Qj does not inter- 
sect any other segment. 
We used this dynamized algorithm in conjunction 

with the algorithm of [ODT90] which computes dynam- 
ically the standard Delaunay triangulation of a set of 
points. 

2.3 Computing the free space, locat- 
ing the obstacles 

We described in [BFZ9O] a way to compute the free space 
and locate the triangles from the CDT of the set of seg- 
ments, using a very simple visibility criterion. 

3 The trajectory generation 
module 

3.1 Introduction 
The behavior of the robot in our demonstration is close 
to the human one: it look around him before moving in 
a hostile environment, then move, then look again and 
so on... 

T h e  algorithm is performed as follows: 
1. Take a panoramic view of what is in front of the robot 

by rotating only the triplet of cameras, update the 2D 
map, compute the free space. 

2. Look if there are possible passages to approach the 
goal. If such passages exist, compute the paths to go 
to them. If there are more than one possible passage, 
choose the best one among them. 

3. If there is a passage, perform the corresponding move- 
ments computed in step 2. and go to step 1. 

4. If no possible passage has been found, perform a 
safe movement in the free space so that the next 
panoramic view will reveal things that have not been 
seen before. Go to step 1. 
Explanation of s t ep  2: 
An edge of the triangulation is a possible passage if: 
It is on the boundary of the free space. 
It is an edge of two triangles (one from the free space 
and one internal to the convex hull). 

r It is not a physical segment. 
r It is long enough. (The robot must be able to cross 

it). 
This definition means that a possible passage is an 

edge of the convex hull that has been built by the process 
that removes the empty triangles, but does not represent 
something that has really been seen (see figure 2). In 
that case, the robot is attracted by such an Uunknownn 
part of the map he built so far. He wants to see what's 
lying there and if there is a passage that can lead him 
to the goal. 

3.2 How we compute a path 
The possible passages are determined during the com- 
putation of the boundary of the free space. See [BFZSO] 
for more details. 

To compute the different paths to the passages, we 
first associate to each passage the corresponding empty 
triangle. 

Then, we can consider the set of triangles that be- 
long to the free space as a graph whose vertices are the 
centers of gravity of each triangle and edges are links be- 
tween each pair of adjacent triangles (see figure 3). The 
length of each edge represent the distance between the 
barycenters of two adjacent triangles. We can then ap- 
ply a common shortest-path algorithm to determine the 
shortest path from any triangle to the triangle right in 
front of the robot. This is a standard Dijkstra algorithm 
that examines recursively all the triangles starting from 
one particular triangle (in our case the one in front of 
the robot) and updates precedence relationships. At the 
end, it is possible to know the shortest way to go from 
any triangle to the initial triangle just by using these 
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go to them. 

smoothing such paths: 

We start recursively from PO. We will first try to 
simplify the path by going directly from PO to P2. Is it 
possible? Yes, the robot won't hit any obstacle. We then 

precedence relationships. try (PO - P3). It works too. Let us try (PO - P4)! This 
If during the examination of the triangles we don't time the simplification is impossible: the straignt line 

take into account the triangles that are too close from (PO - p4) is too close to 0bsl. We then try (PO - p5), 
the obstacles, then we greatly improve the execution (PO - PC)... so on until (PO - P8). Starting from 
time of the shortest path computation. Of course, dis- Po, the only simplification we found was to go directly 
carding empty triangles can make SOme Passages im~os-  from PO to P4. We introduce that modification, and 
sible to reach. For example if there is a narrow gap start again with the way point just after PO now: p3. 
just on the way to a large Passage, safe way can be Doing the same processing, we see that it is possible to 
computed to go to that passage. See figure 5. go directely from P 3  to P7, but not to P 8  as the segment 

So what we do to determine the set of possible paths p 3  - p 8  is too close to Obs5. So, we then try to find a 
for the robot is: we examine each possible Passage, we shortcut that starts from P 7  and so on... The treatment 
look at the corresponding empty triangle, and if there is completed when the last point has been examinated. 
is a path from the triangle in front of the robot then with the example of figure 6, the final simplified path 
we mark it. We then choose among these paths the one is (po - p3),  ( p 3  - p7) and (p7 - p8). 
whose end is the closest to the goal. 

When we test if a shortcut is possible, we have to 
3.3 Simplifying the path check if it is not too close to any obstacle. This test is 
Figure 4 shows clearly that these paths can't be per- made using two different distance functions: one that 
formed without a further treatment: they are not computes the distance between two line segments (for 
smooth at all. Depending on the shapes of the adjoining example when we test if (PO - P4) is not too close to 
triangles the turn angle between each edge of the graph Obsl), and one that computes the distance between a 
may be very big, resulting in a very jagged trajectory. line segment and a point (when we test if (P3 - P7) is 
We propose a very simple method for simplifying and not too close to the extremity of Obs4). 
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Figure 6: How we simplify the path 

It is a very simple recursive treatment. Once we have 
got the final simplified path, we just translate it into 
orders we send to the robot. ..... Posaiblepassage 

Figure 
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If no path is found, then the robot will perform a safe 
movement in the free space so that it can look in the 
unexplored part of the room and maybe find a way to 
go to the goal, as shown in figure 8. 
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