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1 A B S T R A C T  

This paper presents a method intended to reconstruct a 
scene composed of cylindrical objects, and to simultaneously 
estimate the position of the moving camera used to acquire 
the image sequence. The iterated extended Kalman filter, 
used to perform this task, is supplied with the discrete se- 
quence of monocular images of the scene and a poor n priort 
knowledge of the camera motion between successive shoot- 
ing positions. Two real scene reconstructions are presented. 
The first, conducted with the accurate IRlSA robotic plat- 
form, was planned to assess our image processing module. 
The second was performed to evaluate tlie estimator per- 
formances in more realistic running conditions (i.e. with a 
noisy a prtorr knowledge of the camera motion). 

2 I N T R O D U C T I O N  

One of the major aims in computer vision is to extract 
scene structure information from a monocular image se- 
quence. This information can be used in many applications, 
sucli as object recogniticn, motion planning, ven1ot.e con- 
trolled operations . . . 

There are two paradigms' for the computation of motion 
from an image sequence. The first is based on extracting, 
and tracking along the image sequence, a set of relatively 
sparse, but easily distinguishable 2-D features corresponding 
to 3-D object features of the scene (corners, surface mark- 
ings, surface edges, etc). The second paradigm is based on 
computing the optical flow or the 2-D velocity field of some 
image patterns. Then, the 2-D features displacements or the 
optical flow is used to evaluate the camera motion. 

These two paradigms have shown accurate and robust re- 
sults in the case of polyhedric  scene^.^,^ However, most ap- 
proaches based on features or optical flow fail as regards 
scenes with curved obiects. These met.hods use the basic 
hypothesis that object contours are viewpoint-independent. 
Unfortunately, this is not true for apparent contours of 
curved objects. For regular curved objects, an apparent con- 
tour corresponds to the projection of the curve for which the 
surface normals are perpendicular to the line of sight. 

Evolution of apparent contours in a sequence of images 
have already been studied by several a ~ t h o r s . ~ , ~ ~ ~ ~ '  Most of 
the proposed curved surface reconstruction methods require 
an accurate estimation of the camera motion, and sometimes 
use a camera model more simple than the standard perspec- 
tive projection. Moreover, in the case of solids of revolution, 
no approach has taken advantage, as far as we know, of a 
left-right limb matching to improve the estimation perfor- 
niances. 

The proposed method consists in analyzing the dynamic of 
apparent contours in a sequence of monocular images. It is 
based on the discrete feature paradigm and on a cylindrical 
model to represent objects in a static scene. It enables the si- 
multaneous estimation of the camera motion and cylindrical 
object parameters. In this work, the camera is considered 
to be embedded in a robotic platform, the control system of 
which provides a camera motion a prioriestimation with an 
error up to 20 percents. No assumptions are made concern- 
ing the cylindrical scene: number of cylinders, radii,. . .The 
matching of apparent contours in the sequence is performed 
by a visual module not considered herein. The dynamic and 
nonlinear features of the system, as well as the computation 
time burden led us to use the nonlinear Kalman filter (so- 
called extended Kalman filter). This research can be related 
to the work of Broida e l  al.,' who presented a method for es- 
timating the kinematics and structure of a rigid object from 
a long sequence of images. 

3 M O D E L S  

Let us introduce the object, camera and camera motion 
models. The camera motion is decomposed into a rotation 
about the camera optical center, followed by a translation. 
Reconstruction and camera motion are defined in an object- 
centered frame, the orientation of which is identical to the 
camera coordinate frame at the first image. The choice for 
object and camera motion models has been done considering 
the following criteria: the parameterization must be mini- 
mum to design a well-stabilized estimator, the state vector 
to be estimated must be minimum to lead to a good compu- 
tation efficiency of the Kalman filter,$ each geometric object 
has one and only one parameterized representation in order 
to insure direct and inverse transforms. 

The camera is modelled by a perspective projection (pin- 
hole) model. It is defined by an image plane and an optical 
axis perpendicular to this plane, and passing through an op- 
tical center. The distance between the optical center and 
tlie image plane defines the focal length. 

A unique cylindrical model is considered for all the objects 
of the scene - an edge can be described as a cylinder of 
zero radius -. Each cylinder C is represented by a vector 
pc = (a, b ,  p, q ,  R)', where R is its radius and (a, b, p, q )  the 
slope-intercept form of its revolution axis A.  If A is not 
perpendicular to Oy, the orientation and position vectors 
of the revolution axis are respectively (a, 1, b)' and (p, 0,q)'. 
One shall keep in mind that tlie slope-intercept form suppose 
the normalization of tlie axis orientation vector relative to 
one of these non-zero components. The vector representation 



ppc = (A, B, C)' of the  apparent contour, i.e. the  cylinder 
limb projection on the  image plane (xp,  yp), will be given by 
the  implicit form: 

where A, B and C are nonlinear functions of the  cylinder 
vector pc and the  camera position. 

We made no assumption concerning the  camera motion, 
such as  constant motion, fixed axis of rotation, etc. The  
translation is represented by a vector t = (t , , ty ,t,)'. The  
rotation vector representation is used to  express the  cam- 
era orientation (this representation is minimal and not am- 
b~gnous) .  A rotation vector r defines a rotation by an  axis 
n = r/llrll and an  angle about  that  axis 0 = Ilrll. The  
rotation matrix R can be written in terms of the  rotation 
vector r = (r,, r y ,  r*)',  R = Rot(r). T h e  inverse transform 
is r = Vect(R).ln 

4 E S T I M A T I O N  O F  T H E  C A M E R A  M O T I O N  
A N D  C Y L I N D R I C A L  S C E N E  

The  simultaneous estimation of the camera motion and 
cylindrical object parameters is based on a long image se- 
quence of apparent contours. We assume tha t  the  perception 
system ( the  camera) is embedded in a robotic platform, thus 
an a przorr estimation of the camera motion is known. We 
propose to  use this a priori estimation in an  optimal way 
with a Kalman filtering. Our  camera motion and cylindri- 
cal scene models are nonlinear, so we have to  resort t o  the 
iterated extended Kalman filter forn~ulation." 

4.1 T h e  K a l m a n  f i l t e r ing  

The  extended Kalman filter is a recursive filter designed 
for nonlinear dynamical system estimation. I t  may be used, 
provided tha t  the  discrete-time nonlinear dynamical system 
is represented by a nonlinear s ta te  model, such as: 

This  nonlinear system is characterized by an n s ta te  vec- 
tor x  and an  m measurement vector z. The  vector u is a p 
vector of the  known system inputs. The  s ta te  and mea- 
surement functions, respectively f: Rn x RP Rn and 
h : Rn x Rm - R q ,  are nonlinear. Syst.em inputs and 
measurement are  perturbed by the  disturbances w and v 
of known statistics. In this model, we assume that. random 
vectors w of dimension p and v of dinlension in are mut.ually 
uncorrelated zero-mean Gaussian white noise sequences. 

4.2 O u r  s t a t e  m o d e l  

Remember tha t  we have t o  estimate simultaneously 
the cylinder and camera position parameters. In 
image k ,  parameter vector for cylinder i is not.ed 

xci 
= (a:, b i ,p i .  q i ,  R i ) '  and camera position vector is 

written x M h  = ( r i ,  t:)', where r k  is the  rotation vect,or 

and tk is the translation vector of the  camera between im- 
age k - 1 and k .  When there are  N cylinders in the viewed 
scene, the  s ta te  vector is: 

We have mentioned above tha t  the  reconstruction frame is 
object-centered. This  frame is obtained by setting the two 
position parameters p and q of a chosen cylinder, t o  zero. 

The  system input vector uk is the  a priori camera motion 
estimation provided by the  robot control system: 

where rotation and translation components have been sepa- 
rated. 

Cylinder parameters between two successive images of the 
sequence are not modified ( the  scene is assumed to  be static), 
only camera motion estimates have to  be updated. There- 
fore, the  s ta te  equation is: 

where 

Before giving the measurement equation, we have to de- 
fine a distance between two 2-D lines in the  image plane, 
namely the distance between the actual apparent contour in 
the image and its prediction supplied by the  Kalman filter. 
Because this distance must be as  robust as possible, we chose 
the Euclidean distance of 2-D line parameter vectors in the 
2-D line representation space. T h e  slope-intercept form is 
used to  parameterize the 2-D line, with C as  slope and r )  as 
yp axis intercept: 

IJsing this parameterization and considering N viewed 
cylinders, the measurement equation is defined by: 



. . 
where, in the image k and for each cylinder i, (C;,r);) are 
the 2-D line measured parameters and (e; ,  $;) are the 2-D 
line parameters predicted by the Kalman filter using equa- 
tion (1). 

Let us remark that cylinder parameters are given in the 
object-centered coordinate frame. Therefore, using projec- 
tion equations, these parameters have to  be mapped onto 
the camera coordinate frame with camera position parame- 
ters (rk, tk). Let cylinder i be not perpendicular to Oy axis 
of the object-centered coordinate frame. Its parameter vec- 
tor is ( a i ,  b i , p i ,  qi, ~ i ) ,  the direction and the position of its 
revolution axis are v i  = ( a t ,  1, b:)' and d', = (p i ,  0 ,  qi) ' .  In 
the camera coordinate frame, its axis is defined by 'v; and 
cdi . 

k '  
'vk = Rot(-rk)~;  
'dk = Rot(-rk)d; - Rot(-rk)tk 

4.3 The l i m b  m a t c h i n g  

Up to now, we have not made any hypothesis about the 
scene: number of cylinders, number of viewed limbs per 
cylinder,. . . During the initialization process, the state vec- 
tor of the Kalman filter has as many cyl~nders as measured 
2-D lines in the first image of the sequence. When, the two 
limbs of the same cylinder are simultaneously viewed, the 
state parameters are no more independent. It may cause 
some filter unsteadiness. By introducing a limb matching 
process in the estimation loop, a well-stabilized Kal~nan fil- 
ter can be designed. This process has to  match the limbs 
of the same cylinder and modify the state and measurement 
vectors accordingly. The limb matching is implemented with 
the well-suited Mahnla~iobis distance dx, -- t.his distance 
uses all the information provided by the Kalman filter, i.e. 
estimates and uncertainties -. In image k ,  let cylinders i 
and j be represented respectively, by vectors xc;, xc, and 
their covariance matrices Ac,;: Ac;. The Mahalanobis dis- 
tance has the following definit~on: 

The quantity dx2 follows a chi-squared distribution law of 
degree M.  In our case, this degree is equal to five (number 
of cylinder parameters). The limb matching is obtained by 
choosing a typical threshold value in a chi-squared table that 
guarantees low matching error probability 

5 RESULTS ON REAL IMAGES 

We shall now present experimental results to assess our es- 
timationscheme. The Kalman filter implementation is based 
on the iterated Kalman filter algorithm, and the needed Ja- 
cobian matrices are computed numerically. 

The estimation scheme has been tested using different 
scenes, but due to lack of space, we shall only give results 
for a real image sequence. 

The real image sequence was obtained with the AFMA 
Cartesian robot. This robot has 6 degrees of freedom. A 
PULNIX 725 R CCD camera was mounted on t,he robot 

wrist. The camera has a 756 x 581 discrete array and a 
12.5 mm focal length T V  lens. A EDIXIA IA 1000 frame 
grabber was used. Its image resolution is 730 x 510. Dur- 
ing a preliminary phase, the camera and the robot wrist 
were calibrated using a 3-D calibration pattern. The process 
used 17 images of the 3-D pattern to give the "best" camera 
sensor and lens characteristics (intrinsic parameters). The 
extraction of cylinder apparent contours was performed by 
the Hough transform, see figure 1. 

Figure 1: The 37th imageand its apparent contours obtained 
by the IIough transform 

The image sequence consists of 38 images. The camera 
movement is pseudc-circular within a horizontal plane. In 
the same image sequence, the camera moves back and forth 
along a circular path. The camera angular and translation 
displacements per frame are about 10" and 200 mm. The 
camera angular range in the sequence is 80". The scene, 
located a t  a mean 1500 mm distance of the camera, is com- 
posed of five cylinders with different radii. Three cylinders 
are near:! vertical, the other two are 20' tilted from verti- 
cal. The a priori camera motion estimation for the filter is 
provided by the AFMA robot control system - the camera 
position and orientation uncertainties are roughly 1 mm and 
1 mrad - 

Before giving results, we shall mention some details about 
the filter initialization. At the beginning, we consider that 
there are as many cylinders as lines in the first image. All 
cylinders parameters are set to zero. The initial camera 
position is initialized by the vector (0 ,0 ,  -i,,)', with t,, = 
2000 mm (i.e. 25% error relative to the true distance). The 
initial camera orientation is set to zero. To avoid matching 
error, the limb matching process is not activated before the 
filter has reached relative steadiness (1 l th  image). 

The assessment of the cylinder estimates is not easy due 
to our ignorance of the measured camera position with re- 
spect to the scene. So, only the measured (real scene) and 
filter estimated radii will be compared, see table 1 for 0% 
added motion noise. Figure 2 shows the estimated scene 
with shaded effects for the last imageof the sequence (38th). 

In order to  test the filter in industrial running conditions, 
it was attractive to  proceed to a reconstruction with a "poor" 
robotic platform. Unfortunately, having no such a platform, 
we had to  simulate it ,  by artificially adding noise to the 
camera displacements provided by the AFMA control sys- 
tem to the filter. The motion noise model is a Gaussian 
white noise, proportional to the motion amplitude. The test 
was conducted with the previous image sequence and with 
20% error both on rotation and translation (mean standard 



Figure 2: Bottom view of the  estimated scene for the  last 
Image 

Added 

Added 
motion 

Table 1: Comparison between measured and estimated radii 

deviations of angular and rectilinear perturbations along the  
camera path  are 40 m r a d  and 61 mm).  Figure 3 shows the 
typical filter behaviour for cylinder radii. The  table 1 gives 
the absolute mean radius error with 20% added motion noise. 

Figure 3: Estimation results for the real scene with 20% 
added motion noise (limb matching occurred in image 11th) 

G CONCLUSION 

some damping technique is applied. T h e  retained technique 
consists, commonly, in an  exponentially dying increase of the 
filter expected measurement error during the  starting phase. 
Except during the  initial phase where the  method has to  be 
supervised by an  external visual matching process, the sys- 
tem proves to  be autonomous. Once the  limb matching is 
performed, i t  may even be used as  a reliable limb tracker, 
able t o  handle occluded limbs or hidden cylinders. 
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