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ABSI'RACI' 
This paper concerns machine recognition of objects from 

their images, where the recognition is invariant to scale, trans- 
lation, and rotation. A neural network used for recognizing 
input objects is four layer backpropagation network and a 
cluster of interconnected units spanning four layers of each 
network forms a functional block called a column. The 90" 
rotation invariance has been obtained b a specific intercon- r nection scheme between the units in the irst and second layers 
in the network. The scale invariance has been achieved by 
superimposing many columns of different spatial resolutions at 
a specific position on the input visual field. The translation 
invariance has been obtained by overlapping two adjacent 
columns of the same scale. The generalization ability of ob- 
ject recognition system has been improved by using neural 
network ensemble supported by a consensus voting scheme. 
The neural network ensemble has been implemented on the 
Connection Machine, in such a way that (i) all training 
sam les are presented simultaneously, and (ii) multiple net- 
wor !! s are implemented simultaneously. A set of rigorous ex- 
perimentations using 2-D key images has been performed to 
demonstrate the usefulness of neural network ensemble for 
invariant object recognition in terms of computation time, con- 
vergence characteristics, rotation invariance, size invariance, 
translation invariance, and the effect of noise. 

1. INTRODUCI'ION. 
We set the goals of this research as the development of an 

object recognition system which satisfies the following 
specific aims: 

(l) It must provide size, translation, and rotation invariance. 
he invariance should be achieved from the system's struc- 

ture itself, not from the system's training in all possible 
examples of different size, translation, and rotation. 

(2) It must have ood generalization ability. By generaliza- 
tion, we mean t&t the system should be able to correctly 
classify any new input patterns that were not included in the 
training sample set. 

(3) The underlying computation of the system should be 
suitable for massive1 parallel implementation on a parallel 
machine such as the hnnect ion Machine [I]. 

Our first step considered toward these goals was to deter- 
mine an appropriate computational model. A neural network 
was chosen by some advantages that it could provide when 
used for pattern recognition such as (i) a good generalization 
ability (ii) massively parallel computation, and (iii) greater de- 
gree of robustness and fault tolerance by distributed process- 
ing. Among many neural networks, the multi-layer back- 
propagation network model [2] seems appropriate as the com- 
putational framework for implementing invariant object recog- 
nition systems since (i) the network constructs a complicated 
internal representation, (ii) 'the network has a good generaliza- 
tion ability, and (iii) backpropagation is the most effective 
current learning algorithm for the multi-layer neural network 
systems. 
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A neural network consisting of four feedforward layers was 
consequently developed. The network achieves rotation in- 
variance from a particular interconnection scheme developed 
between the input layer and the second layer (receptive field 
layer). Each network can be considered as a functional column 
that recognizes an object with a specific size and a specific 
location. All columns have different spatial resolutions but 
identical weight vectors. The size invariance is achieved by 
superimposing many columns of different spatial resolutions; 
the translation invariance is obtained by overlapping many 
columns of the same resolution. 

A neural network ensemble consisting of a set of neural 
networks was then developed to improve the generalization 
ability of the object recogn~tion system. Each network works 
independently but in a cooperative manner such that each net- 
work makes a different decision for a given input, and the 
neural network ensemble determines a final decision from the 
collective decisions of all the networks. Different decisions by 
different networks represent different ways of generalizing a 
set of training samples. Fig. 1-1 shows a block diagram of the 
overall object recognition system. 
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I FQ. 1 - 1 .  A block dlogrorn of the overdl otject recognnion system 

The remainder of this paper describes the details of the 
neural network ensemble developed for object recognition, its 
implementation on the CM, and experimental results. Section 
2 describes a network architecture for obtaining size, transla- 
tion, and rotation invariant pattern classification. Section 3 
describes a neural network ensemble which is used to improve 
the generalization performance of pattern classifier. Section 4 
describes the implementation of the neural network ensemble 
onto the CM shortly and analyzes the experimental results and 
the generalization performance of the developed system. 
Finally, Section 5 draw a conclusion. 

2 NN ARCHITECI'URJI FOR SCALE, TRANSLATION, 
AND ROTATION INVARIANT OBJECT RECOGNITION 

As shown in Fig. 2-1, the basic element of our object recog- 
nition system is a four-layer feedforward neural network. A 
cluster of interconnected units spanning four layers of each 
network forms a functional block called a column. The input 
layer in a column consists of clusters of 49 input units. Each 
input unit has a localized receptive field of radius r with its 
center located at a particular point in the visual field. The 
input unit captures stimuli (i.e., corners) within the area of its 
receptive field. 
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A group of input units are connected to a receptive field 
unit in the second layer in order to obtain the rotation in- 
variance such that (i) the angle difference between two ad- 
jacent input units is exact1 90' and (ii) the input units are at 
the same distance away i o m  the center of a column. (See 
2-2-b) The only exception is the input unit at the center of a 
column, a unit that is directly connected to a receptive field. 
The 49 input units are locall connected to 13 receptive field 
(rO units in the second layer 6 rf unit directly connected to the 
input unit at the center of a column + 12 rf units connected to 
other 48 input units). Fig. 2-2-a shows a typical interconnec- 
tion scheme between receptive field units in the second layer 
and ingut units in the first layer. The detailed explanation how 
the 90 rotation invariance is achieved can be found in [3]. The 
units in two adjacent layers from the second layer to the hid- 
den layer (or from the hidden layer to the output layer) are 
fully connected. This structure completes one column of the 
overall network. The existence of the third layer is critical for 
some complicated applications for faster convergence [4]. 

In order to achieve scale and translation invariance, the ob- 
ject recognition system contains multiple columns of different 
resolutions. In the current implementation, there are 843 input 
units organized into three groups: 625 fine-scale input units (r 
= 8 pixels), 169 medium-scale input units (r = 16 pixels) and 
49 large-scale input units (r = 32 pixels). Since two adjacent 
columns share 28 input units, there are 49 fine-scale columns 
(columns with fine-scale input units), 9 medium-scale 
columns, and 1 large scale-column. 

In operation, all columns share an identical set of weights 
obtained from training only a single column. The overlap be- 
tween two columns having identical weights vectors provides 
translation invariance. Translation of an object by less than 
one half of the width of a column can be tolerated since (i) the 
translation results in slight perturbation of its representation in 
the input layer of the column covering the object and (ii) the 
receptive fields in the input image field also overlap each 
other. Columns with different spatial resolutions provide scale 
invariance. An object scaled to a smaller size is recognized by 
the small-scale column while a bigger image of the same ob- 
ject is recognized by the large-scale column using the same 
weight vectors. 

Now, we turn our attention to the learning algorithm for the 
developed network. The backpropagation learning procedure 
51 can not be used directly for our network. The procedure L as been modified for the l i n k  connecting the receptive field 

units in the second layer and the input units in the first layer. It 
is convenient to interpret the structure of our network In the 
following manner for understanding the modification: 

(1) A rece tive field unit in the second layer is considered 
as having Pour internal virtual units. 

(2) It is assumed that the error, &, in the output of the 
receptive field unit, which is obtained by backpro agating 

four internal virtual units. 
A' errors from the hidden units, is equally distribute among 

(3) The weight change between the receptive field unit and 
the input u n ~ t  is the sum of the individual weight change of 
four internal virtual units. 

Therefore, Awij, the change in weights wij between the 
receptive field unit I and the input unit j can be written as 

where 6i, oj, and Ij are the error of the receptive field unit i, the 
output value of the j-th internal state, and the value of the input 
unit j, respectively. The bias is treated as an input unit whose 
input value is always 1.0. 

3. NN ENSEMBLE FOR OBJECT RECOGNITION 
A neural network ensemble consists of a set of neural net- 

works (called ensemble) running simultaneously. Each in- 
dividual network in the ensemble has different weights due to 
different initial weights, different sequences of the training 
samples, or different partitioning5 of the input samples used 
during the training. The different weights correspond to dif- 
ferent generalizations of the same set of training samples. The 
decision made. by each individual network may or may not be 
a correct decision. The final decision made by the ensemble is 
based on the all decisions made by the individual network. 
We shall show that the collective decision is much more ac- 
curate because different networks make generalization error on 
different subsets of the input space and because the union of 
these subsets makes the area of input space covered by a 
neural network ensemble larger. 

Fig. 3-1 illustrates how the generalization is improved by a 
neural network ensemble. In this figure, U and T constitutes a 
universe of possible input-output pairs as well as a training 
sample set, respectively. We assume that k networks are 
trained by T independently. Then, the networks produce k 
different weight vectors, wl,w2, ...., wk. These vectors respond 
differently to a new input. In other words, the weight vectors 
make d i f fe ren t  general izat ions in the  input  space,  
GI,& ,...., Gk, respectively. As shown in Fig. 3-1, the area in 
the input space covered by a neural network ensemble is ex- 
panded gradually. Therefore, a certain input misclassified by a 
network can be classified correctly by another network, which 
implies the improvement of generalization performance. 



There are several different ways to arrive at a final decision 
from the decisions made by individually trained networks. 
The most commonly used decision rules are the plurality- 
voting rule and the majority-voting rule [6]. The plurality- 
voting rule chooses the output that is agreed upon by more 
networks than any other. The majority-voting rule takes an 
output that is agreed upon by more than half of the networks. 
When there is no such agreement, the result is considered an 
error. In our work, two decision rules are used in sequence: (i) 
first, the majority rule is used to decide an output of neural 
network ensembles and (ii) if the rule (i) fails to reach an 
output, the plurality decision rule is applied. 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 
4.1. Feature Extraction 

We choose corner points of the boundary of an object as 
features since (i) they are viewpoint invariant, (ii) they reduce 
the amount of data to be processed, while at the same time, 
preserving important information about the object, and (iii) 
their extraction can be done by local computation, thus make it 
suitable for parallel processing. For our research, we adapt the 
Medioni and Yasumoto algorithm [7] since (i) the use of cubic 
B-spline eliminates unusual noisy corners by smoothing digital 
curve contours, and (ii) the computation is local, which is 
suitable for implementing on a parallel machine such as the 
CM. The overall feature extraction process is illustrated in Fig. 
4-1. 

4.2. Implementation of NN Ensemble on the CM 

The implementation presented here is organized into three 
different levels. A neural network ensemble (level 3) consists 
of N network groups. Each network group (level 2) consists of 
n identical networks. A network (level 1) consists of m identi- 
cal columns, where each column is mapped to a processor of 
the CM. Each column consists of (i) four units (one unit per 
one layer) and (ii) weight links connected to the units in the 
column. Fig. 4-2 shows a schematic diagram of three levels. 
They are integrated in a cubical geometry on the CM as shown 
in Fig. 4-3. The geometry denoted by g(N,n,m), where N, n, 
and M is the number of network groups, the number of net- 
works, the size of network, respectively, requires N. n. m vir- 
tual processors. Each processor allocates 4 + 3 . m local 
memory fields in the case of fully-connected networks. 

The detailed description of implementation of neural net- 
work ensemble on the CM is found in 3 . The implementa- E l tion of neural network ensemble has the o lwoing features: 

1. All training samples are presented to a network group 
simultaneously, one training sample per one network. 

2. Every network group has the same input-output trainin 
sam les. Thus, the same set of training samples is copie % 
to ayl network groups. All network groups are trained 
simultaneously with different initial weight constants. Ini- 
tial weight constants obtained from the internal random 
number generator of the CM are stored across the proces- 
sors sharing the same set of data to save the required 
memory space. 

3. The final output of a network group of individually 
trained networks is selected as follows: First, the output 
unit having maximum value in each network is chosen, and 
then the winner among these output units is selected as a 
final output of the network group. 

4.3. Description of the Experiment 

In the experiments, we classified an input image into one of 
16 different classes, corresponding to 16 different types of 
keys. Six of the types had very similar shapes. The neural 
network ensemble used in the experiments consisted of 16 
network groups having different weight vectors. Each network 
group consisted of 96 networks whose weight constants were 
shared among them. Each network had four layers -- the first 
consisting of 52 input units, the second consisting of 13 recep- 
tive field units, the third consisting of 32 hidden units, and the 
fourth consisting of 16 output units. 

The images were obtained using the HP Scanjet Scanner 
(150 dpi) and stored into PCX format. Each image of 64 x 64 
pixels contained an object of about 54 x 54 pixels. Each key 
was laid so that its major axis was aligned with the vertical 
direction of the image field. We extracted corner points from 
the boundary contours of the input images. Fig 4-4 shows the 
examples of boundary contours of input images along with the 
comer points marked by x. 

Fig. 4-4. Boundaries and corner points extracted from keys 

4.4. Performance Analysis 
4.4.1. Rotation Invariance 

First, we tested the rotation invariance property. The ex- 
perimental result showed a small misclassification rate for the 
test samples rotated through multiples of 15'. The misclas- 
sification rates among 16 networks ranged from 0.9% to 7.5%. 
Fig. 4-5 shows the error probabilities for the samples rotated 
by other angles (15- i<a< 15.(i+l), where i=0,1, ..., 23). Each 
point on the curves was obtained by averaging error rates 
made by 384 test samples (16 keys x 24 rotations (15'. i + A0, 
where i=  0,1, ..., 23 and A8 is one of 2.5- j, where j=0,1,.., 5 )). 
From the Fig. 4-5, we note that 

(1) As expected, thg error rates were highest for test 
samples rotated by 15 . i + 7.5, where i= 0,1, ..., 23. 

(2) The avera e error rate of all individual networks over 
al rotation angkes was 9.11, but the error rate by the neural 
network ensemble (NN=15) using plurality- or majorit ) 
voting over all rotation angles was only 1.5k (or 1.94j. 
This result demonstrates that the neural network ensemb e 
increases generalization ability significantly. 
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Fig. 4-6 shows how the classification error rate of the 
neural network ensemble was changed with the number of 
networks using the plurality-voting method. When a single 
network classified test samples, the error rate was high (in the 
worst case, 27 %). As more networks were used, the error rate 
decreased over all rotation angles. The decrease around the 
rotation of 7.5'. which was the worst case, was quite remark- 
able. Also, note that the gain achieved by using more than 11 
networks was insignificant. 

Fi.. 4 4 .  Error Pmb.b(liry o f  NN E-Me 4 t h  Diffcmnt X of Networks €or Rot.& ObjecP 

In determining the final output, first, the object index which 
had maximum votes in each column in the vote array was 
determined. Second, we chose as the final output the ob'ect 
index having maximum votes among the object indexes o/ all 
columns, which had been chosen in the first step. When a tie 
occurred among those indexes, we selected the one which had 
the largest sum of output values. Using the decision rule ex- 
plained above, we made the following observations from Table 
4-1: 

(1) When a sin le network was used, the network often 
made a wmng &cision. For example, when NNo network 
was used alone, the test sample was classified as object 9 
rather than as the true object 1 because the So column had 
the maximum output value. 

(2) When seven networks (NNo - NN6) were used, the en- 
semble would classify the test sample as object 4 rather 
than the true ob'ect 1 because the sum of output values 
(~6.661 in the & column is larger than the sum of output 
values 0.6.606) in the S2 column although both decisions 
have tie votes (=7). 

(3) When N > 8, the network ensemble alwa s made the 
rlght decision because all networks classied the test 
sample as object 1 in the S2 column. 
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4.4.2. Scale Invariance 
Next, we tested the scale invariance of the neural network 

ensemble. Fig. 4-7 shows the structure of the neural network 
ensemble for testing the size invariance. An image field con- 
sisted of 8 different columns whose input sizes were 0.25. S. i, 
where S was the nonnal size of a column, and i = 1,2, ..., 8. The 
largest column had a 128 x 128 pixel array. Eight different 
column inputs of different spatial resolutions were applied to 
16 different networks. 128 different decisions made by 16 net- 
works were sent to the vote array for making a final decision. 
The vote array had 16 x 8 elements, and each element con- 
sisted of an object index and an output value. An example of 
the output of vote array is shown in Table 4-1, where the 
element at the intersection of the row NNi and column Sj is the 
decision output of i-th network about j-tli column input whose 
size is 0.25. S. j. The true object index of the test sample used 
for this example was 1. 

I DecIdon output 

t I 

Fig. 4-8 shows the error probability of the neural network 
ensemble for the five different scale factors, 0.75, 0.8125, 
0.875,0.9075, and 1.0. In the cases of the scale factors of 0.75 
or 1.0, the improvement made by using the neural network 
ensemble was significant. This improvement was expected 
since there existed the columns whose scaling factors were 
S=0.75 and S=1.0, respectively. Also, as expected, the im- 
provement was least for the scale factor in the middle of 0.75 
an! 1.0. 
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Table 4-1. A typical vote array for deciding an final oulpul from multiple networks. 
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4.43. Translation Invariance 

Next, we tested the translation invariance of the neural net- 
work ensemble. For the simplicity of discussion, we assume 
that the translation occurs along the x-axis. As explained in the 
Section 2, translation invariance was obtained by overlapping 
two adjacent columns. We placed 8 additional columns be- 
tween two adjacent columns whose centers were separated by 
8.T pixels, where T = *4,+3,*2, and *1, from the center of a 
specific column (see Fig. 4-9). 640 translated test samples 
were generated (16 keys x 8 translations x 5 variations/transla- 
tion) where the amount of variations was chosen randomly 
between -2 and 2. The final output from the vote array was 
determined by consensus-voting as in the testing of scale in- 
variance. 

Declslon out~ut 
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Fig. 4-10 shows the performance of the neural network en- 
semble for the translated test images. From the figure, we 
noted that the recognition by a single network produced a large 
error rate ( > 0.9) because each individual network was trained 
only by a typical pose of each object. Therefore, the decision 
output of the column whose position was nearest to the input 
image was not always maximum among the 9 different output 
values of the different columns (see Table 4-1). As the size of 
the neural network ensemble increased, the error rate 
decreased significantly (when NN > 5). This decrease oc- 
curred because the decisions made by the networks in the en- 
semble were likely to make a strong consensus gradually as 
the number of networks increased. This unusual characteristic 
of the neural network ensemble could also be observed in the 
case of size invariance. 

5. CONCLUSION 
The main contribution of the research was the development 

of a neural network ensemble which could be used for recog- 
nizing 2-D objects invariant to their size, position, and orienta- 
tion. The scheme was also robust to additive noise. In the test 
of rotation invariance, the average error rate obtained by a 
single network was about lo%, which dropped to 1.5% when 
15 networks were used. The improvement made by the neural 
network ensemble was more apparent for size invariance and 
translation invariance. For scaled images and translated im- 

ages, the classification accuracy of a single network was total- 
ly unacceptable, the classification error rate reaching higher 
than 90%. The error rate dropped to 5 % when the 15 network 
ensemble was used with a consensus voting array. The noise 
immunity of the neural network ensemble was also tested. The 
misclassifcation error rate at 20% additive noise was dropped 
from the 48%, using a single network, to lo%, using an en- 
semble of 15 networks. 

Another contribution of the research was the implementa- 
tion of a parallel simulation tool for neural network ensembles 
on the CM. The simulation program could be used for any 
feedforward backpropagation neural networks of different 
sizes, and any number of networks within the limit of the 
CM's memory allocation. The simulation of the neural net- 
work ensemble on the CM produced the speed of 92 MIPS. 
This speed enabled us to perform the trainings of the 16 net- 
work ensemble within the 2 hours. The modified back- 
propagation learning also accelerated the early phase of the 
training at the cost of the instability of the system. 

In the future, it is hoped that the system described here can 
be extended toward 3-D object recognition.'By using the edges 
as 2-D image features of 3-D objects and training the network 
with the nonaccidental properties of the image features and 
with the geometrical relationships of geons [8] within a 3-D 
object, the network described here could be used for 3-D ob- 
ject recognition without a major modification. 
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