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Abstract Module-1 : Computation of gradient directions. 
Reconstruction of a set of imperfect contour curves which is extracted : Assignment of discrete height to contour curves. 
from a topographical map is one of the important problems in the field Module-3 : Reconstruction of three-dimensional configurations. 

of geometrical information processing. This Paper reports a novel 1, order to make our explanation clear, let us defme several notations. 
multi-module parallel computational scheme to solve the reconstruc- 
tion problem.-The system recovers the three-dimensional ground 
configuration only from the imperfect contour curves, and then 
reconstructs the contour curves by taking the zero-crossing lines for 
the obtained configuration. The system performance is also shown by 
using a 1R5000 scaled topographical map. 

I. Introduction 

Recently, there are considerable interests in computerized map 
reading, since it enables us to construct map data base which can be 
used for broad social activities, e.g., natural resource assessment, 
regional planning, and traffic navigation systems. Here 
segregation/extraction of different features from a map is a very 
important processing. Since contour curves are interrupted by other 
types of map symbols, such as Chinese and ~ a ~ a n e s e  ch&acters, 
numbers, and road symbols, exmcted curves are partially cut off and 
a c o u ~ l e  of seements are lost. Therefore the method to reconstruct - 
(interpolate or extrapolate) the lost segments is indispensable for a 
map information processing system. On this reconstruction problem, 
several approaches have b&n reported. All of them, however, pay no 
attention to the geometric structure which can be understood from 
contour curves. Hence their performance is qualitatively low. 

In this paper, we would like to propose a novel multi-module 
parallel computational scheme, which recovers the three-dimensional 
ground configuration only from a set of imperfect contour curves, and 
reconstructs contour curves by taking the zero-crossing lines for the 
obtained configurations. Note that instead of the absolute heights, the 
relative heights between neighboring contour curves are important for 

Definition-I: Digital image plane D and (i j)-node. 
Let D denote a two-dimensional digital image plane which is given by 

D = ((i j) l W i < AL, WjcAL]. (1) 

Let h e  element (i j )  E D be called the (i j)-node. 

Definition-2 : Contour curves c, and the tangent vector ki,j of the (i j)- 

node. 
Using the chain-code['], n-th skeletonized contour curve on D is 

given by 

[po(n). ko(n). kl(n)... . kM-,(n)l 

where po(n) E D and k,(n)~ ((O,kI),(kl,O),k(l,l)+(l,- 1)) denote 

the initial node and the m-th direction vector, respectively. Therefore 
the m-th point of c, is located at &,I)-node on D which is given by 

m-l 

&.I) = po(n) + km,(n). 
m'=O 

The contour curves is redefmed by the set of the above nodes : 

0 m-l 

c,= lp0(n), po(n)+C km.(n). ...... ,po(n) + k,.(n)). 
m'=O m' = 0 

reconstruction of imperfect contour curves. Also note that the 
concavity and convexity of reconstructed configuration does not Let k k , ~  be a vector km(n) which is the tangent 
matter for the reconstruction of contour curves. In order to obtain the vector of the &J)-node. In the case that the (i j)-node does not belong 
relative height information. consistent madient direction of contour to a contour curve. set Ilk. .I1 = 0. - - . I . ,  
curves must be determined, since they specify which contour curve is 
above and which contour curve is below. The prowsed computational Definition-3 : Neighborhood nAi,j of the (i j)-node. 

scheme consists of the following three proced"res: Let "Aisj (n=4,8,24,48) denote the subset of D which is given by 

Procedure-I: Computation of gradient direction, 
Procedure-2: Assignment of relative height to contour curves, "A..= ((i+kj+l)IO < l k l  ,111 5 

IJ 
d!iziA] 

Procedure-3: Reconstruction of three-dimensional configuration. 2 

for n = 8.24.48 
In section 11, three parallel processing modules which implement the 
above procedures are designed in the light of regularization and ,Aivj =((i+l j),(i j+l),(i-l,j),(i j - I ) )  for n = 4 
energy minimi7ation techniques. In section 111, in order to show the (2) 

-. 
system performance. the computational scheme is applied to 1R5000 where k, I N, and the symbol di,j indicates the neighborhood of 
scaled maps published by Geographical Survey Institute of Ministry 
of Construction of Japan. the (i j)-node. 

Definition 4 : Neighborhood "Ac, of the contour curve c,. 

11. System Architecture Let "Ac, denote the subset of D which given by 

The proposed system consists of the following three modules '"Ac,= u "'Ai u c, , 
which cany out the above procedures: 

(ij)Ecn 



f x for Ixl < 1 where the symbol Ac, indicates the neighborhood of the contour 

curve c,. 

2.1 Designing the module 1 

Let us design the fmt module which computes a set of normalized 

gradient vectors denoted by (ni,,e RZ I (i j ) ~  Dl. In the module, a set 

of tangent vectors denoted by (ti,,' R2 I (i j ) ~  D) is computed in stead 

of gradient vectors. The main mechanism of the module is based on 
the energy minimization technique. Hence, a couple of cost functions 
are derived from the geometric properties which the contour map 
generally satisfies. Assume that : 

Assumption-I : Each of contour curves are sufficiently smooth, 
Assumption-2 : There is no singular point in the neighborhood of 
contour curves, 

Assumption-3 : A subset of tangent vectors (t,,,, I &,I) E 4 ~ i , j )  are 
sufficiently parallel with each other in the neighborhood of a ordinary 
point located at (i j). 

In the case Lhat the (i j)-node does not belong to a contour curve, 
from assumption-3, the optimal value of tiVj minimizes the following 
cost function : 

On the other hands, in the case that the (i j)-node belongs to a 
contour curve c,, the associated cost function is modified. Recall the 

definition-2, and note that tiSj must be parallel to kimj. Using the 

variable si,, E R' whose magnitude is less than 1, set 

Substituting (5) into (4), we obtain the following cost function : 

From assumption-l and 2, the optimal value of sij minimizes E2(i j). 
Furthermore, there must be a couple of &J)-nodes which belong to 
the same contour curve in the neighborhood of the (i j)-node. From 
definition-l and assumption-I. the sign of must be equal to that of 

si,,. Hence the optimal value of s i j  minimizes the following cost 

function as well as (6) : 

Using these three cost functions, total energy of the module is defined 
by 

( i  j) = 1- l lk i j IEl ( i j )  + I l k i j  i + E i .  (8) 

l a  "ti,, and yt,, denote the first component and second component 
of tiSp respectively. The differential dynamics of the module is 

obtained by applying the steepest decent method to the total energy 
function (8). 

where 7, a and a' denote time parameter and a pair of time constant. 
and where f(*) denote a threshold function which is given by 

f(x) = 
for 1x1 2 1 

, , 

By selecting a contour curve q, arbitrarily, the initial conditions of ti,, 

and of siJ are set as follows: 

t . .=k i , ,  and siUj(O)=l for ( i j ) ~  ~ g .  (1 1 .a) 
'J 

t. . = 0 and siVj(O)=O) f o r ( i j ) ~ q , .  (1l.b) 
1J 

Fig.l(a) shows the schematic drawing of c, and initial conditions on 

D. A set of optimal values of ti,i  and si.i are obtained by iterating the 
dynamics (9). (see Fig. 1 (b)) 

Remark : In the actual case, these assumptions sometimes does not 
hold, e.g., a skeletonized contour curve loose its smoothness, and a 
singular point appears in the neighborhood of a contour curve. In 
order to avoid these problems, another simple mechanism which 

adjusts the time constant a is applied to the module. 
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Fig.1 Computation of tangent vectors. (a) The schematic drawing of 
contour curves on D. The tangent vectors on co indicate the initial 
conditions. (b) The way how tangent vectors are determined from co. 

B. Designing the Module 2 

Next, let us design the second module which computes a set of 

discrere height which is denoted by ( h i , , ~ 2 '  : ( i j ) ~  Dl. Simply 

speaking, computing process is as follows. Setting hiJ = 0 of the 

(i j)-node on co, and propagating the discrete height information from 
co to the entire map in accordance with the gradient directions, ni,i' 
which are given by 

ni,,= Otis, ,-Xti,i)/llti,jll . (12) 

One can easily determine whether the &J)-node ( ( ~ J ) E  8 ~ i j  ) belongs 
to the "upward" or "downward neighborhood of the (i j)-node by 
computing the following value: 

( k " ~ i , j  ' "r,,) - 
where 

k.lpi,i = ~-i.l-j)/(&-i)Z+~-j)Z)l'Z, 



and 0 denotes a threshold value. If the above value is positive, the 
(k,I)-node is in the upward neighborhood of the (i j)-node, otherwise 
it is in the downward neighborhood. The upward (respectively 
downward) propagation is governed by the following simple rules: 

Propagatwnrule-1 : In the case that the (i j)-node is not on any 
contour curves, if the (k.1)-node is in the downward (respectively 
upward) neighborhood of the (i j)-node, then substitute the same 
discrete height of the @,I)-node to that of the (i j)-node. 

Propagation rule-2 : In the case that the (i j)-node and the @,I)-node 
are on the same contour curve c,, in comparison of their relative 

heights, the height of the c, takes the larger value. On the other hand, 

if @,I)-node is in the downward (respectively upward) neighborhood 
of the (i j)-node, then add (respectively subtract) the constant integer 

value denoted by Ah to the the height of the @,I)-node, and the 
obtained value is substituted to the discrete height of the (i j>node. 

The above two propagation rules are realized by a simple 
difference dynamics as is shown below. 

Consider a conuol parameter of the process, m E (-1,l). In the 
case that m=l (or m=-1), the upward (or downward) propagation is 
carried out. Using (13). propagation rule-1 is realized by the 
following difference dynamics: 

where 

+ , = Y(m(k.lpi,j nk,l)-O)Y@-b,lI) , 

and p denotes a positive large number. Y(-) and em[*] are a pair of 
threshold functions given by : 

1 for x > 0 
Y(x) = 

0 for x I 0 

y for x > 0 
em[xs l  = 

- m p  for x I O  

In the same manner, propagation rule-2 is realized by the 
following difference dynamics: 

(17) 
where 

&,I = llkk,~l'+'@-%,~b 

$,I = (l-llkk,dby@?"~i,j nk,l)-O)y@-%,d). 

Using (14) and (17), the dynamics of the module is given by 
1 hlij = (m+l) max ( ~?[(l-llki,fl*,~,\,~l, 

( k ~ ~ ) ' ~ i . i  ~ [ I I ~ ~ , J I ~ , ~ . \ , ~  1, 

t$~llki,]l Q.I,\,~+IIIA~I 

$ilk JC~.~.\.~+~I.~~,~) (18) 

Only the first term of the right hand side of (18) operates with 
m=l, i.e., upward propagation, while only the second term of the 
right hand side of (18) operates with m=-1, i.e., downward 
propagation. 
Next let us illustrate how the module operates. Set the initial 
conditions for each discrete height as follows (see Fig.Z(a)): 

0 ~f c0 
hiJ = { 

-mp otherwize 

Upward propagation is carried out by iterating the dynamics with 
m=1. Figure 2(a) shows a schematic drawing of hiSj obtained from 

the difference dynamics of (18) in the upward propagation. After 
convergence of each discrete height, then set m and the initial 
conditions as follows: 

In the similar manner, upward and downward propagations are 
carried out alternatively, until discrete heights for all contour curves 
converges. Figure 2(c) shows a schematic drawing of hiej obtained 
from the difference dynamics of (18) in the downward propagation. 

high 

low 

Fig2 Assignment of discrete values to the contour curves as their 
height The way how the height information are propagated (a) 
toward the upward d i t i o n .  (b) toward the downward d i t i o n .  

C. Designing the module 3 

In the third module, three-dimensional ground configuration is 
reconstructed exploiting regularization technique f21L3]. Assume that 
three-dimensional configuration, z=h(x,y), is two times continuously 
differentiable. Then, the associated smoothness constraint is given by 
the following cost function L41 : 

# 

D (19) 
In order to accelerate the reconstruction process, the pyramidal 
computation method is used. Let D denote a digital image plane 

P 

which is scaled by p E (0,1,2,3,4] : 

Let (Php,,~ R' I (p,q) E D  ] denote a set of continuous heights on 
P 

Dp. The discretized cost function associated with (18) is given by 



2 and hpVQ denotes the discrete height of the (P.0)-node obtained by the 
E,@,q) = fi*p+1.~-2 -2h*p.q + h*p~,g) 

2 second module. 
+ 2(h$1,~+1- h 'b+~,q-hB~,q+~+ hB1.q-I) The differential dynamics of the module is obtained by applying 

In the case that (p,q)-node is in the neighborhood of the edge of Do, 

the slightly modified cost function is used in stead of (21). A set of 
the discrete heights associated with contour curves is used as the 
boundary conditions. A set of the optimal continuous heights 
minimize the cost function (21). In the conventional technique, it is 
not easy to compute a optimal solution, because of a lot of local 
minima in the energy surface of (21). Especially, the undesirable 
solutions are often obtained in the following two regions (see 
Fig.3(a)) : 

1. Edge region of the image plane. 
2. Neighborhood of a contour curve whose structure is complicated. 

In order to avoid the undesirable solution in the region 1, we define a 
flame of the image plane and the associated cost functions. In order to 
avoid undesirable solutions in the region 2, the discrete height which 
is obtained by the second module is locally used to correct them. 

Let us design several cost functions. Set the subsets of D as 
P 

following (see Fig.3(b)) : 

Rp(0) = ((p.9) I ~L~*s~<(~L+AL)~*.~L~~Q<(~L+AL)~*) 
= ((p.q) I (6L+AL)2*<p<(26L+AL)2*, 

(6L+AL)2*<q<(26L+A~)2*) 
R,(2) = ((p,q) I ~ L ~ * S ~ < ( ~ L + A L ) ~ * ,  

(6L+AL)rSq<(26L+AL)2P) 

R,(3) = ((p,q) I Wp<6L2*,(6L+~~)2*<q<(26~+~~)2*) 

Rp(4) = [(p.q) I O~p<6L29.6L2*<q<(6L+~~)2*) (22) 
Rp(5) = ((p,q) l O<p<SL2*,0<q<SL2") 
R,(6) = ((p,q) I ~L~*<~<(~L+AL)~~,O<~CSL~*) 

Rp(7) = [(p,q) I (~L+AL)~*<P<(~~L+AL)~*.O<~<~L~*) 
R,(8) = ((p,q) I (6L+AL)2*<p<(26L+~~)2*, 

6L2P<q<(6L+AL)2*) . 
R (i) (i = I ,  ..., 8) corresponds to the frame of the image plane D, 

P 
while R (0) corresponds to image plane D. 

P 
In the case that the @.q)-node belongs to Rp(i) (i = I .  ..., 8). cost 

functions are given by (23)-(25). 

%@.@ = x %*k,l)2 for 0 . q ) ~  Rp(n) (n=l.3.(3) 

( ~ , I F ~ A , , ,  (23) 

On the other hands, in the case that the (p,@ belongs to Rp(0). the 

cost function depends upon p. With p = 0.1 or 2, the following cost 
function is applied: 

In this case. the discrete heights of contour curves are considered as 

the boundary conditions. On the other hand. with p = 1/16 or 1/8, the 
cost function is given by: 

the steepest decent method to (23)-(27). 

where .r and a denote time parameter and a time constant, 
respectively. 

Finally we illustrate how the third module operates. First a set of 
discrete heights is computed in the following manner. If the (i j)-node 
on D belongs to a contour curve, i.e., c,, or the upward neighbor- 

hood of c,, the discrete height of c, is substituted to hiSj. On the other 
hand, if the (i j)-node belongs to the downward neighborhood of c,. 

the discrete height of c, is subtracted by Ah, and the value is substi- 

tuted to hiSj. These discrete values are used for correction of undesira- 
ble solutions, and the above computation is easily carried out by the 
second module. Next, the dynamics (27) is iterating until all variables 
converge under the following conditions: 

p = 4, and 4h*p,q = 0 for all (p.q) E D4. 

In the next step, using a set of discrete height, i.e., [hij I ( i j ) ~  D). 

the set of continuous heights, i.e.,(h*p,q I (p,@ E D4), is corrected as 

follows: 

If [4h*p,q]-h1,, = 0 holds, set 4h*p,q = hlSl 

othenvise, set 4h*p,q = hlvl 

where (1.J) = ( [ ( i+6~)2~] , [ ( j+6~)2-~])  , and [x] is the function that 
rounds off x. Then, initial conditions for a set of discrete height. 

(3h*p,,q, I (p ' .ql)~ D3), is given by 

3h*p',q' = 4h*lp'~l.[q'~1' 

The dynamics (28) is iterating again with decreasing p, i.e., p=3. In 

the similar process is repeated until p = 0. 

an undesirable solution 
in the edge region of the image 

an undesirable solution 
in the neighborhood of a contour curve 

\ 

Fig.3(a) The undesirable solutions. 

%@,q) =E,(PJI)+ ~lkp,,ll(Ph*p,q-hp,Q)2 (27) 
where 

(P.Q)=(p-6L.q-GL) 



Fig.3(b) Subsets of Dp. Rp(0) corresponds to the original image data. 

Rp(n) (n=1. ..8) correspond to the frame of the image plane D. 

111. Numerical Experiments and Results 

To demonstrate the performance of the system, the 1125,000 
scaled topographical map "Hourigawa" which is published by 
Geographical Survey Institute of Ministry of Construction of Japan is 
read by a five-bit g a y  scale scanner with 300dpi resolution. Figure 4 
(a) shows the associated original image data with 256x256 pixel, 
while Figure 4(b) shows the extracted contour map from FigA(a). 
Fig.4 shows the reconstructed three-dimensional configuration and 
contour curves. It is clearly seen that all of contour curves are 
completely reconstructed and they are consistent with the original 
imperfect contour curves. 

Acknowledgement This research was supported by Nippon Steel 
Co. The authors would like to thank T.Furukawa of Nippon Steel 
Co., W.Kim, K.Masu. T-Tsukahara, I.Tokuda of Tsukuba University 
for useful comments and exciting discussions. 

References 
[l]H.Freeman,"Computer processing of line-drawing images", 
Computing Surveys, 6,1, pp.57-97,1974 
[2]T.Poggio, et al.,"Computational vision and regularization theory", 
Nature. Vo1.317, pp.314-319, 1985. 
[3]K.Ikeuchi, et al.,"Numerical shape from shading and occluding 
boundaries", Artificial Intelligence,bl. 17, pp. 141-1 84, 198 1. 
[4]D.Tempoulos. "The Computation of Visible-Surface 
Representations", IEEE Trans. PAMI, Vol.PAM1-10, b1.4, pp.417- 
438.1988. 
[4]D.Terzopoulos:"Image Analysis Using Multigrid Relaxation 
Methods", IEEE Trans. PAMI, Vol.PAM1-8. No.2, pp.129-139, 
1986. 

Fig.4 Experimental results. (a) Original image. (b) Imperfect contour 
curves extracted from original image. (c) Reconstructed threedimen- 
sional configuration of the ground. (d) Reconstructed contour curves 
obtained from the configuration (c), by taking the zerocrossing lines 
from obtained configuration. 






