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The literature on region analysis is dominated by al- 
gorithms and applications for binary images. In con- 
trast, region analysis of color images is a relatively un- 
explored field. This paper presents some new research 
that strengthens the notational support for boundary 
encoding of color image regions, offers a sequential algo- 
rithm for extracting color region boundaries and outlines 
a VLSI architecture for the extraction of color region 
boundaries in real-time. 

A. Binary Images 

The literature describes a number of notations for rep- 
resenting boundaries in binary images. Most rely on the 
fact that since only two colors are present, one may be 
considered background. Only the boundaries of the fore- 
ground regions need be defined; the background regions 
are defined by implication. The notations may describe 
either the location of the pixels on the perimeter of each 
region, or alternatively the cracks between the boundary 
pixels. 

B. Color Images 

In contrast, the notations for color regions are not so 
well developed. The most common notation is a simple 
extension of the most basic binary image notation. Each 
region in the image is described in terms of the pixels 
lying on its perimeter. However, this notation has dis- 
advantages. It introduces a redundancy factor of two 
into the description. Each boundary is shared by two 
regions, which separately describe the same boundary. 

This description also does not adequately represent 
the physical properties of a boundary. For example, 
if one wanted to simplify a complex boundary [I], the 
boundary descriptions of both bounding regions would 
need to be simplified. Moreover, the boundaries would 
need to be simplified consistently otherwise aliasing 
could arise between the regions. 

Alternatively, each boundary may be described in 
terms of the cracks between two regions. Thus adja- 
cent regions may use that common description, thereby 
avoiding the redundancy of describing each boundary 
twice. Also, if the boundary were simplified, the changes 

'Work done while the author was at the VLSI nnd Systems Tech- 
nolow Laboratory, University of New South Wales. 

to the boundary would by default be reflected in the 
shapes of both regions. Such a notation has already 
been proposed [2], but not in the context of raster scan 
analysis. 

The price of this notation is additional complexity 
in the data structures. Instead of each region being de- 
scribed in terms of a single boundary, it is now described 
by n sub-boundaries, where n is the effective number of 
neighbours that region has. Each sub-boundary sepa- 
rates exactly two regions, and is linked to exactly two 
other sub-boundaries at each end - one for each of the 
two regions the sub-boundary bounds. The exception is 
in the case where a region's boundary consists of pre- 
cisely one sub-boundary. 

As boundary approximation and image compression 
are two of the key objectives of this project, the crack 
notation has been developed. 

A. Background 

The only algorithm described in the literature for the 
extraction of color region boundaries is a simple bound- 
ary tracing algorithm [3]. This requires the entire image 
to be in RAM, and its completion time is dependent on 
image complexity. 

Many binary image boundary extraction algorithms 
use a sliding window to analyse pixel relationships. T y p  
ically a 2x2 pixel window is slid over the image in 
a raster-scan fashion. As the raster-scan progresses 
boundaries of regions are propagated down the image 
via the application of three basic rules: initiation, p rop  
agation and joining. 

Since only a limited number of pixel relationships may 
occur in such a window, a look-up table may be used to 
establish which of the rules are to be applied in any in- 
stance. The propagation and joining of the boundaries 
can be implemented dynamically through the use of reg- 
ular data structures. 

It is the sequential nature of such binary image algo- 
rithms that allows real-time hardware implementations 
[4]. However, in order to perform boundary extraction 
for color images in real-time, a sequential algorithm suit- 
able for color images must be developed. 

B. Analysis of a 2x2  pixel, n-color window 

A 2x2 pixel, n-color window may contain some part 
of either one, two, three or four different regions. For 



Figure 1: Possible arrangements of regions in a 2x2  pixel, n-color 
window. 

each of these cases, there exist one or more possible ar- 
rangements of the regions (see Figure 1). 

In total, there are seven equivalence classes, each ap- 
pearing as a row in Figure 1. Each class has one, two 
or four members depending on its behaviour subject to 
rotation and reflection. Evidently there are only fifteen 
possible arrangements of regions in a 2x2  window. 

The fact that only fifteen different situations can arise 
allows for the construction of a relatively simple sequen- 
tial algorithm based on a small look-up table. Note that 
binary algorithms such as [5] rely on a total of sixteen 
arrangements; windows 8-15 in Figure 1 and their eight 
inverses. 

The arrangements in Figure 1 are the basis for a 
raster-scan algorithm suitable for color images. All that 
remains is to establish a set of propagation rules for each 
of the fifteen cases. These rules may reflect either of the 
common notations used to describe the boundaries of 
color regions. In this paper, the crack-based notation 
will be used because of its generality. 

C. Propagation rules 

In addition to the three rules used in binary image al- 
gorithms (initiation, propagation and joining), a fourth 
rule, termination is added. Such a rule is not necessary 

Table 1 :  Rules for boundary propagation for each of the states 
depicted in Figure 1. 

State 
1 
2 
3 
4  
5 
6 

9 

11 
12 
13 
14 
15 

in the binary context as there is no concept of bound- 
aries terminating. 

Table 1 illustrates how the rules may be applied to the 
fifteen possible states depicted in Figure 1. Such a table 
will be used as the basis for a hardware implementation 
of the algorithm. 

Boundary 
North South East West 

T I I T 
T I I 
T I T 
T I T 

I I T 
J I I J 

7 P P P P  
8 P P  

P P  
1 0 P P P P  

P  P  
J J 

P  P  
I I 

111. A SUITABLE VLSI ARCHITECTURE 

A. Motivation for a Real- Time System 

The idea of boundary encoding images for image 
transmission is not new [6]. Boundary encoding may 
also be used as a tool for image analysis [7]. In either sit- 
uation, there are applications where real-time boundary 
encodine: is essential. This mav be achieved in one of two - 
ways: applying a standard algorithm to an appropriately 
powerful computer or building specialised hardware for 
the purpose. Given the magnitude of the problem at  
hand, the latter approach has been taken. 

B. System Requirements 

30 frames per second. 
Filtered and classified, 16 bit color image input. 
512x512 pixel image. 
Continuous output of region boundaries. 
A latency of not more than 80msec. 

C. Allocating space for growing data structures 

The greatest difficulty with building real-time bound- 
ary extraction hardware is allocating space for bound- 
aries as they grow. The length of a boundary may vary 
from a few bits to a few Kbits. This and the need to 
store partially built boundaries ensures that such hard- 
ware is not easy to design. Furthermore, boundaries are 
curves composed of one or more max-points and min- 
points, which means that when a raster-scan of an image 
is taken, various monotonically increasing or decreasing 
portions of curves (referred to as queues in [4]) that were 
previously assumed to be unassociated will eventually 
join. 

If the resultant boundary is to be represented by a 
single contiguous list of bit sequences, as is normally 



the practice, then a problem arises as to where bit se- 
quences for a particular queue will be situated in the 
complete boundary. Since queues are typically numer- 
ous and small, linking them with pointers is likely to be 
exceedingly expensive. 

One solution to the problem is to take two passes of 
the image [4]. In the first raster scan, data is collected on 
the length of each of the boundaries and its constituent 
queues. Before the next pass is made the data gath- 
ered in the first pass is analysed and used to produce 
a table indicating where each boundary and each queue 
is to be written in memory. When the second pass is 
made, boundary codes are generated and placed in the 
appropriate memory locations. 

The two-pass approach underlies the architecture de- 
veloped here. The problems posed by the relative com- 
plexity of color image boundary descriptions have meant 
the architecture presented here is in most other aspects 
quite different from that proposed in [4]. 

D. A pipelined architecture 

A four-stage pipelined architecture is proposed. Stage 
one will take a raster scan of the image (see Figure 2) 
and produce a queue length table (Table 2). Stage two 
will analyse the queue length table and produce a mem- 
ory segmentation table (Table 3). Stage three will take 
a second raster-scan and produce boundary codes, us- 
ing the memory segmentation table to place them con- 
tiguously in memory. The fourth stage will output the 
boundary codes sequentially. 

Such an architecture relies on an input image having 
no more than N queues. Given that the input images 
have been filtered and classified, choosing N as 64K is 
reasonable for a 512x512 pixel image [4]. 

D.l Stage One 

This stage establishes the memory requirements of 
each queue and the relationships between connected 
queues, writing the information to a large table imple- 
mented in RAM. 

Table 2 indicates the data content of the table. For 
each queue, there are entries for queue length, the queue 
to which it is connected at  its lower end, the sub- 
boundary to which it is connected associated with the 
region on its lower side, the sub-boundary to which it is 
connected associated with the region on its upper side, 
the color on its lower side and its apparent region num- 
ber, as noted during the first raster scan. Note that 
there is an implicit connection between left and right 
queue pairs, hence the need for only one Next Q field. 

The depth of the table is dictated by the maximum 
allowable number of queues (64K). Such a table would 
be implemented with 3 x 32 x 64Kbit static RAM. At the 
initiation and termination of each queue, the proces- 
sor must write data to the queue length table. In the 
worst case (windows 1 and 6 in Figure 1) this involves 4 
writes in one pixel-time. Given the 127nsec pixel time, 
a memory cycle time less than 3lnsec is required. This 
is well within the limits of current static memory tech- 
nology. The necessary speed is achieved by use of four 

I/O buffers and a degree of internal pipelining. 
The processor for this stage will consist primarily 

of microcode controlled by the fifteen possible window 
states. The microcode will be responsible for the writ- 
ing of data to the table. A line-store will hold pixel and 
queue data for the current image line. 

D.2 Stage Two 

During this stage, the queue length table is traversed 
and memory segmentation data produced. The goal is 
to traverse every sub-boundary from end to end, al- 
locating memory so that the boundary codes for each 
sub-boundary may be written contiguously during stage 
three. 

The procedure only involves translating region num- 
ber and queue length data, so one physical table may be 
used by both stages one and two. 

The approach taken to translating the data is to start 
at the &st queue in the table and then follow the bound- 
ary of the region on its lower side (the region with color 
equal to Color A) until returning to the original queue. 
All sub-boundaries in the region boundary are traversed 
from end to end, except the sub-boundary to which the 
original queue belongs. 

Whenever a queue is encountered with Color A equal 
to the color of the region being traversed (Color A of 
the original queue), the region number for that queue 
is updated and the queue is flagged as having had a 
Color A traversal. The region number for every such 
queue on a particular region boundary will thus be made 
consistent. 

As the raster scan progresses, consistent region num- 
bers can be propagated to all pixels in each region. The 
effect of this is a solution to another image processing 
problem, connected-components labelling. 

The procedure is continued until every region bound- 
ary has been traversed once (all sub-boundaries are tra- 
versed exactly twice). 

This algorithm may be implemented in hardware as 
a f i t e  state machine. Two read and one write buffers 
are used to achieve the speeds required. The second read 
b d e r  is used to pre-fetch the next queue data. In the 
wont case the table traversal will take 8N clock cycles 
for N queues. With N=64K, this means 512K clock 
cycles, exactly one half-frame delay. 

D.3 Stage Three 

The hardware requirements for stage three are very 
similar to those for stage one. A second raster-scan of 
the image is made, during which boundary codes are 
generated. Data is read from the memory segmenta- 
tion table and used to write boundary codes to their 
appropriate locations in memory. Note that the bound- 
ary codes are written in near-random order. If it were 
desirable, region labelled pixels could be output as well 
as the region boundary codes. Microcoded control logic 
very similar to that used for stage one reads queue data 
from the memory segmentation table. 



D.4 Stage Four I 1 

Stage four outputs the boundary codes in sequential 
order. If the boundary code memory is implemented as 
an odd and even pair of fast static RAM chips, boundary 
codes can be output in pain, effectively doubling output 
speed. Under such a scheme, existing technology will 
allow a worst case 1M boundary codes to be output in 
under 14msec, a .4 frame delay. 

Figure 2: Three regions showing boundaries, sub-boundaries and 

D.5 Integration max-points numbered in raster-scan order. 

The similarity of the first and third stages, along with 
the simplicity of the state machines required for the sec- 
ond and fourth stages, can be exploited to produce one 
single-chip multi-function processor. Such a processor 
can be built with a lmicron CMOS process. The volume 
of data to be passed from stage to stage suggests that 
the pixel stream should be interleaved between three 
processors frame-by-frame, each processor processing a 
single frame through each of the four stages (Figure 4). 

A guaranteed latency of less than two frames allows 
the use of just three processors to complete the four- 
stage pipeline. 

IV. CONCLUSION 

The extraction of region boundaries in real-time has 
a number of potential applications. This paper has out- 
lined a notation for representing color region bound- 
aries, a raster scan algorithm for boundary extraction 
and an architecture suitable for implementing in a VLSI 
pipelined processor. 
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Table 2: Queue data for Figure 2 after the table building phage. 

Figure 3: Segmentation of memory resulting from application of 
the segmentation algorithm to regions in Figure 2. 
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Table 3: Queue data for Figure 2 after memory segmentation and 
region labelling phase. 
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Figure 4: Pipelined boundary extraction architecture. 
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