
MVA '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992. Tokyo

An host-target environment for real time
image processing

M. Pizzocaro
Electronic laboratory - Blaise Pascal University

U.R.A. 830 - C.N.R.S.

Electronic laboratory - Blaise Pascal University
63177 AUBIERE - FRANCE

Email: pizzocaro@lesmti.univ-bpclermont.fr

ABSTRACT

The development of a real time image processing
on a specific architecture is always restricting for the user
who must master all the elementary mechanisms of the
machine. Such specialised machines are not really
designed to be used by inexperienced users. In order to
build an application, we need to have a good knowledge of
specific processors, and to resolve inherent timing
problems when using the real time. The gap between the
transformation concept applied to the images and the very
low programming access of the specific processors is total
for the user. So, we have designed an open bus platform
associated with development tools in order to resolve this
problem which, on a conceptual level, separates the global
functions applied to the images from the hardware system
which processes them.

1. Introduction

The open bus platform combines two systems : a
real time VME target linked to a Unix workstation by a
high speed VMV bus. The target consists of a CPU and an
adaptable set of video boards joined together by an
auxiliary ECL bus according to a pipeline structure. This
bus allows a data flow of 25 images 512x512 per second
from a video camera or a video memory to be transfered.
The Unix workstation holds development tools for the
generation of the target application and complementary
off-line processing in synchronization with it. To design
the development tools, the smartest solution would be a
definition of image processing orientated language.
However, in an adaptable context this would not allow us to
keep the versatility of the target, since possibility of adding
or substracting video boards to process deal with specific
applications would be subject to an updating of the
language used. So, to keep this versatility through the
interface, we have associated a modulable library
according to the video boards with a sequencing language
which has been defined using the tool YACC -Yet Another
Compiler Compiler- generator of syntactical analysers.
In this context, the user will define his application in terms
of global functions, without working on a low
programming level, which would be inefficient. The
development tools allow him to adapt the target topology
with respects to a given class of applications.

In this paper, we present, first the architecture of
this open bus system, secondly the versatile environment
based upon the definition of a sequencing language.

In order to achieve this platform, we have chosen a
cross environment tha t links a Unix workstation
containing the development tools to a real time target
system fixed to a VME bus. This type of system is
hostltarget orientated. There is a development
environment and an execution environment -Fig. I-. The
two systems are coupled firmly by a common memory
area. This link is carried out by the VMV bus as it is called
throughout this document [ll which operates with the full 32
bit data and 32 bit address range.

Fig.1 System overview

2.1 The target

The definition of Realtime systems is important.
The IEEE Committee producing the P O S E 1003.4 standard
propose the following definition :

"Realtime in operating systems : the ability of the
operating system to provide a required level of service in a
bounded reponse time".

To achieve this, the system must have low
overhead. This leads to the requirement that the systems
are memory resident with no paging or swapping to slow
down the systen.

In our case, real time image processing means
processing a data flow of 25 images 8x512~512 per second.
In spite of the high bandwidth of the VME bus it is
necessary in multiprocessor environments to process data
flow on an auxiliary bus. So the target structure can be
reduced to three sub-units :

- Specific video boards : a set of processors [21
connected to a synchronous ECL bus according to a pipeline

structure. The exact nature of the processors depends on the
application to be carried out. A number of them are however
essential, such as those used for the functions of digital
coding, reconstruction from a digital form, or image
memory. Other modules will be used for low level
operations, typically convolution, filtering and middle
level operations a s characteristic extraction or edge
chaining. This set of modules works according to
recirculation techniques. The chain of cascaded modules
recirculates its output back into its input.

- The management system : i t is made up of a
conventional central processing unit. I t contains the real
time operating system. It manages the application which
loads the registers of the video boards after each frame
passage in the pipeline. The later is specified by a VME
interruption.

- The communications system : i t includes a
module which links the VME bus and the VMV bus [I].
This module is slave VMV and master VME. It shares the
VME bus with the CPU and translates the VMV cycles into
VME cycles in the target.

The host computer is a Unix machine that combines
a bus system with a compatible bus PC-AT. This open
structure contains the interface [31 between bus PC-AT and
bus VMV. This interface has a memory window of 64 KO
through which, after mapping, a Unix process can reach the
VME address space of the target via memory reads and
writes.

3. Development and execution
environment

The software interface has been designed for
building off-line, the real time application interactively.
The user acts with a mouse to choose, among a database,
processings and places associated data structures into a
ressource file. This ressource file is eventually translated
to the target where the real time kernel manages the
application. Such interface means that a lot of its code must
be devoted to handling interactions between the user and
the core of the application.

The most im~or tan t feature of the interface is its
flexibility to a wide range of target configurations, i.e
according to the active video boards. This interface is
composed of two layers. The low level layer is part of
operating systems to control peripheral devices such as the
communication system and specific video boards. The
high level layer handles interactions between the user and
the core of the application. This layer, called the user
interface, offers specific ressources with respect to the
target configuration.

3.1 Device handling

The low level layer includes device drivers for the
host and the target computers. It allows to read and write
datas to and from the devices.

~ n ' t h e Unix workstation, the device driver allows

the window interface to be mapped into the virtual address
space of the application running under Unix -Fig. 2-. This
device driver controls notably the 110 boundaries for the
common memory area and avoids incorrect read-write
cycles with devastating results on the target. Moreover, a
fault handler is integrated to trap the bus timeouts which
result from the passage of the asynchronous VME context to
the synchronous host context. Thus the Unix system does
not abort the tasks.

Mapping
Unix

Logicd address

Window on h e

\

Fig.2 V.M.E acces throught the window interface

The target system works under a real time
executive. After each pass of frame in the pipeline, a device
driver traps the VME interruptions sent out by the video
board which is the master of the auxiliary ECL bun. The
processing time of the interruptions must not exceed 2.68
ms, the latent period between two frame passages in the
pipeline -Fig. 3-. Only one 110 request will be made in
order to load the video board registers and thus to avoid the
reaction time of the core processing the request.

Blanking Blanking

Image vidm I4 ~ m g e 4 I_ ~ m a b -
40ms 2.6ms 40ms 2.6ms 40ms

Config R A M -> C.S.R

Fig.3 Timing of interruptions

The user works only on the workstation side which
runs the user interface. In order to design this interface,
the smartest solution would be a definition of image
processing orientated language. However, in an adaptable
context this would not allow us to keep the versatility of the
target, since possibility of adding or substracting video
boards to process deal with specific applications would be
subject to an updating of the language used. So, to keep this
versatility through the interface, each video board structure
is individually described by a database. A set of board
configurations called functions, for standard processing,

are supplied. This environment is flexible. The user can
modify it by discarding or by adding new functions for
which he has to define their formal parameters and fix
those which he hopes to hide.

To build an application, we use the basic concept
according to which an application on pipeline architecture
includes several elementary processings associated in
iteration structures. A sequencing language allows us to
specify their chain shape.

An elementary processing is the transformation
applied to the image during its passage in the pipeline.
Each processing draws together the functions executed by
each active video board. The user chooses these functions
by their validations in the database and places them into
the ressource file. The general shape of the application will
comprise a set of elementary processings.

We note "blk -Fig. 4- the data structure associated
to an elementary processing.

pointer i

nfiguration
bloc for actif

, processor n

Fig.4 Data structure associated to an elementary
processing

If the application requires n different processings,
we will use an array of structures blk[nl. We obtain,
according to a "c" declaration, for this array with a target
including four video boards :

struct (csrl board-1 ; csr2 board-2 ; csr3 board-3 ; car4
board-4) blk ;

array of struct : blk [nl ;

Each blk[il structure contains the board C.S.R
definitions and is defined according to a shape :

struct (char csr [81) csrl ;

Those structures, placed in the ressource file, are
handled in background and hidden from the user. He
works only with an object oriented interface which
manages icons.

From this array of structures, i t is easy, with a
sequencing language to specify the processing chain. This
language uses the index "i" of the element blk[il joined to
an iteration number.

This formulation is very concise to specify complex
chains from a collection of basic configurations.

Two examples show th i s formulation

We find the elementary processings with their
iteration numbers : '*n' , a short notation to specify a
continuaty of processings : ' ->I, breakpoints for a
synchronisation with a n UNIX task : '!'. This
synchronisation is carried out by using a mailbox situated
in the VME address space.

The first expression developped gives us :

3.3 Language and grammar

The coherence of such specific expression given by
the user, must be checked.

Phrase-Structure grammar, defined by a set of
rewriting rules is used to check the coherence. A grammar
is a set of rules which allow to build an infinity of
language sentences ; in reverse, this set of grammatical
rules allows us to check if a sentence belong to it.

We define an analyser to check the conformity of
the expression to the grammar rules.

The grammatical concepts were formalized and
developped by Chomsky [41. He divided the Phrase-
Structure grammars into four types according to the forms
of the rewriting rules or productions. These types depend
on restrictions of the sentence productions.

In this classification, we use type-2 grammars
named context free grammars [51. They allow to define
recursive rules what is very useful in programming
languages and are not context sensitive.

To define the rewriting rules, we use the "Backus et
Naur Form" or B.N.F :

The chain expression shapes to the productions :

< expr > ::= [expr I I
< expr>,<expr> I
< expr>*<number> I
[<number arrow number>] I
[number1

< number > ::= <digit><number> I <digit>

The nonterminal vocabulary describes the
language but does not appear in the sentence language. It is
surrounded by symbols : "<" , 5".

The terminal vocabulary appears explicitly in the
sentence language.

The symbol "::= " means "can be rewritten as".

The hierarchical structure of the chain expression

appears through the recursive rewritting rules.

To check the expression coherence, we decompose
the analysis. We distinguish two phases which divide the
chain expression in intermediate representation :

. The scanner or logical analyser. The input
stream is read from left to right and partitioned into basic
items called tokens.

. The parser or syntactical analyser. I t assigns
structure to the resulting pieces according to the rewritting
rules.

The scanner allows the lexical units for the
expression to be identified and to be moved towards the
syntactical analyser. If The expression does not fit the
grammatical rules of the language an error is detected.

The syntactical analyser was created by YACC [61 -
Yet Another Compiler Compiler- from grammar
production rules. A pushdown automation is defined as the
recognizer for this type of context free language.

Additional disambiguating rules are necessary
because input can be structured in two different ways like
this one :

The grammar rule :

< expr > ::= < expr>,<expr,

does not completely specify how complex inputs should be
structured. YACC [61 allows to define disambiguating
rules to resolve the parsing conflicts. In our case we specify
symbol "," as a right associative operator.

3.4 The target load

If no error is detected, a configuration file is
generated on the host computer and then loaded into the
target. This file holds the validation mask of the active
target boards, their configurations and the chain
expression.

A loader running on the target, relocates the data
structure in the V.M.E address space. This loader tranfers
datas from the common memory area which contains the
file configuration to the RAM system .

For a real time task, it is necessary to convert those
datas in a adaptable form. The validation mask of the
boards is used to create the real time YO buffer. The buffer
shape is identical to the data chain structure of elementary
processings. So a t each interruption only one I/0 request is
needed and so avoiding latency of the real time kernel to
serve the request.

Between the interruptions, this buffer will be
initialized with a new configuration. This initialization
must be done according to the expression of the processing
chain. This expression cannot be processed in real time. It
is necessary to convert it in a tree.

For example, the following expression becomes a
binary tree structure as shown in Fig. 5.

At each terminal node of the tree a elementary
processing is associated. Each node, root of a sub-tree,
holds the iteration factor of the underlying structure.

This representation will give us a very condensed data
structure, independently of the iteration number of
elementary processings.

Fig.5 Tree and binary tree

The real time execution is now ready. The tree
processing is carried out from terminal node to root node.
The shifting is done from left to right and repeated
according to the iteration factor contained in the sub-tree
root.

The development of this system is carried out for
five Datacube video boards [21. The workstation is an HP
9000 - 433 machine. This development platform can be an
eficient tool when defining real time image processing on
complex systems. The user can rapidly understand how
this interface works. One needs no special training in
order to appreciate the hardware and software mechanisms
of the system.

5. References

[I] VMVbus Vertical Bus System VBR 8212NBE 8213.
Technical Report - 1989 -
Creative Electronic System. Switzerland.

[2] Datacube, The Max Video Family Image
Processors, Technical notes 1989.

[31 Vbat 8218 VMV Interface for IBM - AT
Technical Report - 1989 -
Creative Electronic System . Switzerland.

[41 N. Chomsky Three models for the description of
language. IEEE Trans. Information Theory IT-2, 113-124
(1956).

[5] A. Aho, R. Sethi, J. Ullman : ' compilers "
Addison-Wesley Publishing Company. - 1989 -

[61 Stephen C. Johnson : " YACC - Yet Another
Compiler Compiler " ; pp 1-29, 1984 ; Bell Laboratories,
Murray Hill, New Jersey

