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ABSTRACT 
In this paper, we propose view-based recognition, a 

method for 3 0  object recognition based on multi-view 
representations. We analyze view-based recognition 
and compare its performance theoretically and empir- 
ically with one of the most commonly used method for 
3 0  object recognition, 3 0  bounded error recognition. 
In particular, we show that the probability of false pos- 
itive or false negative matches in a view-based recog- 
n.ition system is not substantially different from the 
probability of similar errors in other commonly used 
recognition systeins. Furthermore, we derive an up- 
per bound on the number of aiews needed to be stored 
by a view-based recognition system in order to achieve 
zero probability of false negative matches. Simulations 
and experiments on real images suggest that these esti- 
mates are conservative and that view-based recognition 
is a robust and simple alternative to the more tradi- 
tional 3 0  shape based recognition methods. 

Introduction 
In this paper, I describe and analyze a, view-based 

recognition (VBR) system for the recognition of 3D 
objccts in 2D images. 

Unlike previous 3D recognition systems, which have 
generally combined both view-based and 3D model- 
based approaches,3-6 this system uses a strictly view- 
based approach to the representation of 3D objects. 
That is, a, model of a 3D object consists simply of a 
collection of 2D views of the 3D object. In order to 
recognize objects in images, all the views representing 
each 3D object are compared against the image using 
a 2D matching algorithm. 

View-based approaches to  3D object recognition 
have several important advantages over 3D model- 
based approaches. VBR greatly simplifies model ac- 
quisition problem, the representation of partial object 
models, the representation of smooth surfaces, and the 
modeling of effects such as lighting and shadows. In 
practice, VBR turns out to  he very robus't and easy to 
implement. And, VBR, allows us to  address questions 
such a.s similarity measures and re~ognit~ion by parts 
in a simpler 2D (rather than 3D) framework. 

Despite these obvious advantages, the acceptance 
of view-based mrthods has been hindered by concerns 
about the space- and time-requirements of such meth- 
ods ("how many views are needed?"), and by the 
approximate and seemingly heuristic nat.ure of view- 

based approach. To address these concerns. I present 
a number of theoretical and empirical results. 

Bounded Error Recognition 
The formalization of the 3D recognition problem 

that we chose here is that of bounded error recognition. 
Bounded error recognition has been studied exten- 
sively in the computer vision literature and forms the 
basis of many different recognition systems (Grimson4 
gives an extensive review and references). 

The idea behind 3D recognition under bounded er- 
ror is the following. First, we assume that objects have 
visual characteristics (features) that can be localized 
in images and transform as if they were rigidly at- 
tached to the object as the object undergoes 3D rigid 
body transformations. 

In order to account for variability in object shape, 
limited sensor resolution, and sensitivity of the feature 
extraction process to lighting, we do not require that 
features occur in the image exactly in the positions 
predicted by the mathematical model of the object. 
Instead, we allow them to be displaced by a small, 
bounded amount from their true locations. 

Mathematically, we can formalize the bounded er- 
ror recognition model as follows. Assume the object 
model consists of a collection {m,)  of points in IR3. 
An image consists of a collection {b,) of points in IRZ. 
A bounded error match consists of a set of correspon- 
dences j, (usually, 1-1 but not onto) between model 
features and image features together with a 3D rigid 
body transformation T3 such that IIPT3m, - b,, 1 )  5 c, 
where P is the camera model-usually orthographic 
or perspective projection-and c is an error bound. 

View-Based Recognition 
As in the 3D bounded error recognition case, we as- 

sume that images consist of features. However, rather 
than using object models that represent objects a.3 col- 
lections of 3D points, we use object models that rep- 
resent objects as collectioris of views, where each view 
is a collection of feature locations in IR2. We declare 
a match between a the model and the Image if for any 
view of the ol~ject,  we can find a bounded error match 
under 2D equiform transforn~ations (translation. rota- 
tion, and scale). 

More formally, we write the view-based model as 
{m:), where r identifies the view. A match under 
the view-based approximation then consists of a view 
r ,  a set of correspondences j, between features in the 
view and image features, and a 2D transformation T2 
(translation, rotation, and scale) satisfying: llT2mr - 
b,,ll 1 6. 

The motivation behind this approach is the follow- 



ing. Consider a set of points in IR3 that can undergo 
rigid body transformations and scaling. Such a trans- 
formation is given by 7 parameters: 3 parameters to  
specify a translation, 3 parameters to  specify a rot,a- 
tion, and one parameter to  specify scale. 

Let us assume an orthographic projection model. 
Then it is easy to see that translation along the pro- 
jection axis does not affect the projected image of the 
points. Furthermore, by symmetry, translations, ro- 
tations, and scale in the image plane can compensate 
for 4 of the remaining 6 parameters describing the 3D 
pose of the set of points. 

This leaves us with two parameters (e.g., identifi- 
able with slant and tilt or the points on the surface of 
a sphere, the viewing sphere) determining the actual 
location of points in the projection of the set of 3D 
points, up  to  2D translation, rotation, and scale. 

The changes induced in the image of a 3D object 
by varying these remaining two parameters appear 
like non-rigid deformations of a 2D model. Therefore, 
instead of modeling them exactly, we can simply at- 
tempt t o  model them as "2D error" or "noise" on the 
location of features. 

Probability of Error 
View-based recognition is only an approximation to 

3D bounded error recognition, in the sense that the 
possibility of false positive or false negative matches 
exists (i.e., that  a VBR system incorrectly declares an 
object as present or absent in a scene). Intuitively, 
the probability of such errors depends on the number 
of views used by the VBR system and on the pararn- 
eter 6. In this paper, we will assume that 6 has been 
chosen and sufficient number of views has been stored 
such that the probability of false negative matches is 
zero (it can be shown that this is always possible). It 
remains then to estimate the probability of false pos- 
itive matches. 

The basic idea is the following. We can represent 
the complete set of views of an object consisting of k 
features as a subset of I R ' ~  by concatenating the 2k 
coordinates of the feature locations into a single 2k- 
dimensional vector. The shape of this set (the view 
set) will be determined by two components: the shape 
of the object and the error model we use. Different 
error models give rise to  different kinds of view sets. 
Let us denote the view set for some given object under 
a bounded error model as S,, and the view set for 
the same object using some alternative error model as 
Sa. Then S,, - Sa represents the set of views that 
are recognized by the bounded error model but not 
by the alternative model (false negative matches), and 
Sa-S,, represents the set of views that are recognized 
by the alternative model but not by the bounded error 
model (false positive matches). The volume of the set 
Sa - SBE is related (via a probability distribution on 
all possible inputs to  the recognition system) to the 
probability of a false positive matches. 

Space does not permit us to  present a complete anal- 
ysis here, but it can be shown2 that for a number of 
commonly used recognition methods, including least,- 
square error recognition and alignment, the volumes 
of Sa - S,, are within a fixed constant factor of each 
other. 

For example, for comparing recognition under 

bounded error with recognition under least square er- 
ror, we can observe that the corresponding view sets 
S,, and S,,, are dilations of a single manifold un- 
der different but similar metrics in the space of all 
views. This lets us relate the volume of the difference 
S,,, - S,, to the constant in the definition of similar- 
ity between the two metrics in view space. Analogous 
analyses can be made for methods like alignment. 

But the same can be found to be true for t,he view- 
based approximation, if we choose 6 = cr for some 
constant c. However, unlike the effect of choices like 
bounded error recognition vs. least-square error recog- 
nition, which is of fixed magnitude, the view-based ap- 
proximation to bounded error recognition actually lets 
us approximate bounded error recognition arbitrarily 
well by choosing a smaller constant c. That is, by de- 
creasing c, we can make the volume of S,,, - S,, (and 
hence the probability of false positive matches under 
most probability distributions) arbitrarily small. Of 
course, as we will see below, we have to pay in terms of 
stora e and computation: we need to store and match 
o(6-g) views. 

Number of Views 
We noted above that the appearance of a 3D object 

in a 2D image is determined by two parameters (e.g., 
identified with points on the viewing sphere) after ac- 
counting for 2D equiform transformations. 

Now, if we assume that the relationship between 
these two parameters of the viewing transformation 
and the locat,ion of features in the image is piecewise 
smooth (an assumption that is certainly satisfied for 
features that are "attached" to the object), then it will 
be true that small changes in slant and/or tilt will give 
rise to  only small changes in the location of features 
in the image. 

Generalization from a Single View We can for- 
malize the notion of smoothness of the viewing trans- 
formation as requiring piecewise uniform continuity 
over the viewing sphere. To do this, we make use 
of the modulus of continuity: 

It is not difficult to  see that if the maximum modulus 
of continuity of the viewing transformation is bounded 
as p 2 y, then each individual view of an object 
will match a solid angle of approximately on the 
viewing sphere. 

Since the viewing sphere is a 2D surface, and since 
we are covering it with patches of linear dimension 

!, we expect that we need 0((t)-2) different patches 
,r, 

(and hence, views) of an object. 
We can derive more concrete bounds by actually 

bounding the modulus of continuity. Let 11s nqsume 
that translations have alrrady been accounted for. 

Then, a viewing transformation consists of a ro- 
tation R, a change of scale S, and a projection P: 
b,, = P S R(m,). 

We know that for small rotations (say, of size c)  
around an axis given by a unit vector r ,  the displace- 



ment of a vector v is given by: 

Since for a unit vector r ,  it is true that Ilr x vll 5 llvll 
we know that llAvll 5 IIvII. Furthermore, since P = 
diag(l , l ,O),  IlPvll I IIvII. 

Therefore, we see that for any axis of rotation, scale 
factor s ,  and small angles of rotation c, the projection 
of an attached feature v does not move by more than 
cllvll (this bound actually also works for large c). 

Hence, the modulus of continuity of the view- 
ing transformat.ion with respect t o  any rotation is 
bounded as / L  = sllvll. Now, because images are 
formed on a sensor of finite diameter (retina, CCD 
array) sllvll is bounded by a constant determined by 
the sensor hardware. So, if we assume that the sensor 
is bounded by a circle of radius D, then p is simply 
D. 

Covering the Viewing Sphere Above, we have 
seen that for an individual view, for smooth view- 
ing transformations, changes in slant/tilt of order c 
will move the location of features in the image by less 
than cp. Since we require that 6 2 cp, this means that 
for a given 6, E is a t  least as large as 4. " 

Now, allowing changes in slant/tilt by an amount of 
c corresponds to  an area of cr on the viewing sphere: 

(the last inequality comes from the Taylor series ex- 
pansion of cos). 

The viewing sphere has total area 47r. The total 
number V of circular patches required t o  cover the 
viewing sphere, if we could choose their placement, 
is then bounded (including a factor of 2 to  account 
for the fact that we cannot cover the viewing sphere 
without overlap using circular tiles): 

This is the bound on the number of views of a 3D ob- 
ject under a bounded error recognition model and al- 
lowing the view based recognition algorithm t o  choose 
the individual views. 

The ratio $ is the error that is tolerated by the 
recognition system relative to  the size to  the image of 
the object. In practice, this ratio will be somewhere 
around 5%. If we choose 6 in the view-based approx- 
imation such that 6 = 0.05 this results in an upper 
bound on the number of views of 3600. 

Note that the resulting bounds on the number of 
views of an object are independent of the complexity 
(number of features) of the object. Object complex- 
ity does have an influence on the number of different 
views in the PI-esence of occlusions: objects with more 
features tend to have a larger number of aspects ( a  
bound on the number of aspects in terms of the com- 
plexity of an object is given in5). 

We will see below that the number of views required 
in an actual view-based system can be much smaller. 
One reason for this is the frequent occurrence of ap- 
proximate invariants and the presence of characteris- 
tic non-metric information (topology, non-geometric 
information) in images. 

Efficiency 
View-based recognition lets us replace matching of 

a single 3D model with matching of a larger number, 
say El, of 2D models. This may not appear to  be a 
good tradeoff from an efficiency point of view. How- 
ever, upon closer examination, it appears that view- 
based recognition may actually be faster than direct 
3D recognition. The reason is the following. 

The complexity of bounded error recognition al- 
gorithms is dominated by the minimum number of 
correspondences between image and model features 
that determine an alignment (among other things, be- 
cause of the potential size of the output of the algo- 
rithm). Let us consider the case in which no additional 
"grouping" or "segmentation" information is avail- 
able, and in which there are N image features and M 
model features. Then, a 3D recognition algorithm will 
have complexity of approximately R(V(N, M )  N3M3), 
where V(N, M )  is the time required for "verifying" 
a match, while a 2D recognition algorithm will have 
complexity of approximately R(V(N, M )  N2M2) .  

If anything the constants in these asymptotic com- 
plexities will be better for the 2D algorithm due to the 
simpler geometric computations involved, and, hence, 
2D recognition can be carried out faster than 3D recog- 
nition by a factor of NM. Now, as long as N M  > R 
(recall that R is the number of 2D models in the 
view-based approximation), the view-based approach 
t o  recognition will be faster than the direct 3D ap- 
proach; this inequality is satisfied for commonly used 
error bounds and all but very simple scenes and ob- 
jects. 

Simulations 
Above, we have seen theoretical analyses that sup- 

port the idea that view-based recognition does not dif- 
fer significantly from 3D methods in terms of the prob- 
ability of false positive errors, and that  view-based 
recognition does not require "too many" views in or- 
der to  work. 

Since large data  bases of images and object models 
for testing 3D recognition systems are not available, 
we had t o  rely on simulations in order to  compare the 
performance of different 3D recognition methods (3D 
alignment, least-square matching, linear combination 
of views) with view-based recognition on large model 
bases. The simulations used data  bases consisting of 
1000 differently bent "paper clips" (these object were 
chosen because they have also been used in a variety of 
other simulations and psychophysical experiments. In 
some representative experiments, each paper clip con- 
sisted of 20 line segments, and the location of features 
(bends) in the image was uncertain by approx. 5% of 
the total projected size of the clip. The sin~ulations 
were more difficult for the view-based recognition al- 
gorithm than the case analyzed above, since it was 
given a collection of random views of the object as in- 
put, from which a model had to be built. In contrast, 



Figure 1: Example of an airplane recognized by the 
view-based recognition system. 

the 3D recognition algorithms received as input the 
(perfect) 3D model used to generate the images in the 
s~mulation. 

Under these conditions, we found that 300 views 
needed to be stored for each view-based model in order 
to achieve an error rate smaller than that of optimal 
3D matching algorithms. 

The predictions about robustness of view-based 
recognition were confirmed. For example, in a dif- 
ferent set of experiments, intersections between pro- 
jections of segments of the paperclips were used as 
features, rather than the locations of bends. 3D based 
methods designed for attached features (not surpris- 
ingly) failed completely on this problem, while view- 
based methods only required 2-3 times as many train- 
ing examples t o  achieve the same error rates as in the 
case of attached features. 

Real Images 

We have implemented a prototype view-based 
recognition system for 3D objects that builds object 
models automatically from examples. The system can 
reliably recognize and distinguish model airplanes in 
scenes of 3D objects in the presence of significant clut- 
ter and occlusion. 

An example of the optimal match and initial pose 
estimate returned by the system is shown in Figure 1. 
Input to  the recognition module consisted of the raw 
output of a Canny edge detector. The 2D matching 
algorithm did not require (or take advantage of) any 
grouping or segmentation information, nor did it re- 
quire the extraction of "point featuresn. Furthermore, 
there was no attempt t o  tune any of the system's pa- 
rameters: the Canny edge detector was used with its 
standard settings, 2D error bounds of 10 pixels were 
used. 

The internal view-based model was built from 32 
different views of the airplane a t  different elevations 
and orientations. Models were acquired automatically 
by the system. These views were matched against an 
input ima e using a modified version of the RAST 
algorithm. k 

The system was tested on 22 scenes containing the 

model and other objects (toy airplanes, cars. blocks, 
etc.). Only in one of the 22 scenes was the first choice 
of the system incorrect (in that case, the second choice 
gave the right match). 

An example of a match is shown in Figure 1. Note 
that the model view includes a shadow of the airplane, 
a useful and salient frature for recognizing this kind 
of object. 

Discussion 
As we noted in the introduction, the idea of view- 

based recognition itself is not new. However, up to  
now, it has been used apologetically and as a heuristic. 
In the analysis and empirical results presented above, 
we have established clearly the relationship between 
view-based recognition and one of the most commonly 
used approaches to 3D recognition-3D bounded error 
recognition. Rased on such results, the author hopes 
that view-based recognition will be viewed as a well- 
founded, simple, and robust approach to 3D object 
recognition, rather than as a heuristic. 

From the theoretical considerations, we can infer 
that view-based recognition is particularly well-suited 
to  recognition tasks in which scenes are cluttered, but 
in which very precise pose estimates arr  not needed. 
Rut even in cases where precise pose estimates are 
needed, view-based recognition is still a useful pre- 
processing step-the initial match and approximate 
pose estimate returned by a, view-based system can be 
refined using other techniques. 

From a practical point of view, we believe that view- 
based methods are currently the only feasible methods 
for general-purpose, robust, integrated 3D recognition 
systems, i.e., systems that address both the model 
acquisition and the recognition problem for complex 
scenes. 
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