
MV. '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992, Tokyo

MAPP2200 Smart Vision Sensor. Programmability and Adaptivity

Anders L t r o m and Robert Forchheimer
NP Integrated Vision Products and

Department of Electrical Engineering, Linkoping University

S-581 83 LINKOPING, Sweden
email: andersa@isy.liu.se

Abstract

This paper briefly describes the architecture and functions
of the smart vision sensor MAPP2200 and shows examples
of the assembler syntax which forms the basis of the
software development. ?tuo application examples are given
and an implementation of adaptive exposure control for
MAPP2UX) is presented.

1 Architecture

1.1 General

MAPPZUX) Vision Sensor is an optical sensor component
that includes a digital image processor. Samples of this
component have been available since August-91. A block
diagram of MAPP is shown in Figure 1. For a more
detailed description of MAPP see [S].

256 x 256
Sensor

[~ ~ ~ ~ s i i PLu

STATUS

Figure 1, Block diagram of MAPPZZOO

1.2 Sensor

The sensor area occupies about half of the silicon area and
consists of 256 rows with 256 photo-diodes each, see upper
part of Figure 1. The image data is read out row-wise in
parallel to an analog register (PD). This register content
can be converted into digital values in two ways. Either to
binary values using a threshold voltage, or to gray scale
values using the internal A/D-converter (AO-A7). This
AID-converter can be programmed to convert with

different precision, i.e. from 1 bit up to 8 bits, dependingon
the requirements on speed and precision.

1.3 Processor and instruction set

The lower parts of Figure 1 show the digital section of
MAPP. The shift register S&S7 is an 8 bit bidirectional
shift register which can be used for external
communication of data or for communication between
processors. The processor block consists of 256 parallel
processor elements (PE). The internal memory for each PE
is % bits, RO-R95. The arithmetic logic unit consists of
three parts. The Global Logical Unit, GLU, performs
global operation such as LFILL which sets all the
accumulator bits to 1 which are to the right of the leftmost
1. The Neighborhood Logical Unit, NLU, can be set to
apply an arbitrary 3 by 1 binary kernel using the PE and its
two neighbors. For instance, (1x0) means that if the left
neighbor is 1 and the right is 0 the result is 1, otherwise 0.
The X stands for don't care. The Point Logical unit, PLU,
operates locally in each PE. 'Ifrpical operations are AND,
OR, XOR, and so on. The following list is a brief summary
of all instructions in MAPP.

PLU LD, AND, OR, XOR, LDI, ANDI. ORI.
XORI. ADD, ADC, ADA, ANDC, ORC, XORC,
MUXC

NLU Arbitrary (a,b,c) ; a.b.c E 1.0,X
CLU MARK, LMARK, RMARK, LRMARK, FILL,

LFILL, RFILL, LRFILL
Transfer ST {A.C.AX,PD}.S/R, ST S,S/R, ST R,S
Misc SETR(ow), SETV(o1tage). SETPD, SETAD,

SETB(oundary), SAVE, LOAD, ROL. ROR,
INITAD, SRES, INITPD. READPD

By reading the status register COUNT we obtain the
number of 1's in the accumulator which, we will show, is
useful in many applications.

2 Programming environment and syntax

2.1 Syntax

The M A P P m is programmed by using a MAPP2UX)
Assembler for the MAPP instructions and a C program for
the controlling process. A simple MAPP program may
look like this:

.FILE test.h

.PROC M-init
SETAD STEP1
SETR 0

. ENDP

.PROC M-run
INITPD,+ ; Reset this line
READPD ; Read next line
INITAD ; A/D-conversion
.ITER(8 i) ; From A/D-reg to S-reg
LD A(0 i)
ST A.S(O i)

. ENDI
. ENDP
. ENDF

When this source code is run through the assembler the
program is converted into arrays of short integers, i.e. 16
bits codes. Each procedure generates its own array. For
example, the output file in the above example would
contain two arrays of short integers called M-init and
M-run. This file is then included in the final C program:

#include "test .h"
#include "mapp. def
main()

{
int i;
while (TRUE) {

writecode(M-init);
for (i-O;i<256;i++) {
writecode(M-run);
Store(0.i); /* Output device */

1
1

1

The include file mapp.def contains the definitions of
writecode, Store, and other MAPP driver routines.

Macros are used to simplify and minimize MAPP
programming. The macros are expanded using the C
preprocessor. The macro must be defined within the
program, or in a file included in the MAPP program. A
standard macro library has been developed which contains
arithmetics and filter functions.

2.2 Bit-serial programming

As MAPP does not have a multi-bit ALU we have to
perform all arithmetics in a bit-serial fashion. A
MAPPUOO routine which adds two b-bit operands looks
like:

LD R(X)
ADD R(Y)
. ITER (b -1 addi)
AM: R(X 1 addi)
ADA R(Y 1 addi)
ST A.R(Z addi)

. ENDI
ST C.R(Z b -1)

In order to aid the MAPPUOO programmer a number of
bit serial routines have been dweloped. Examples of
routines in this library are: add, subtract, add 2-comp, sub
2-comp, mult, mult 2-comp, multiplex, etc.

2.3 2D filters

As MAPP is a linear array of processors we only have
access to one line of pixels at a time. 'Ib implement 2D
filters we have to use the registers as temporary storage for
previous rows. This means that we need to store a number
of previous row/results to obtain the following rows. This
type of processing is called Row-parallel Pipe-lining, see
[I]. A typical C program may look like the one in section
2.1. The include file test.h again contains two MAPP code
sequences, M-init and M-run. The M-init resets the
registers used and sets up the ADC etc. The M-run
contains the code for the filter. A typical macro call from
the standard filter library in MAPP looks like this:

IN is the location of the input register group to the routine.
PREV and PPREV are two previous results which must be
stored between each run. OUT is the location where the
result is put. TMP is the location of the temporary memory
needed. b is the number of bits used in the routine. The
routine uses a 3x3 lowpass filter which can be separated
into4 additions, see [4]. It is veryeasy tocombine a number
of macros. This enables us both to perform different
operations and to use larger kernels. For instance:

In this case the output from LOWPASS is passed directly
to LAPLACE2 Note that we can use the same temporary
memory in both routines. The effect we get is that we will
have more smoothing in the image as we now apply the
following filter:

3 Examples
3.1 Moment calculation

This routine is based on the ideas in [3] which describes a
moment calculation performed on an SIMD array. The
computation is separated into a vertical and a horizontal
computation. The input of the image. as a binary image
through the comparators, is done during the vertical
computation where the moments mfi mXl, and m d are
computed. None of these computations are performed as
multiplications as they can be separated into additions.
Each PE computes the moments mfi mxl, and m d in its
own column. When the vertical scan is completed we have
to perform the horizontal computation in order to obtain

the moments moo, mol, moz, mlo, mil, and mm. The first
three of these moments can be obtained as a horizontal
summation of md, m,l, and md, which is done using the
powerful count feature. For example, if m d is placed in
register 0 to N-1 we compute mm as:

mOO = 0;
for (i=O;i<N;i++) {
writecmd(LD I i);
mOO += (COUNT)<<i;

1

To compute mlo, mlb and m a we have to perform a
multiplication followed by the global addition described
above. The value to multiply by will be a constant vector
ranging from 0 to 255, corresponding to PE 1 to 256. By
using certain tricks the constant vector can be generated in
approximately 256 cycles. To obtain mlo, m d is multiplied
by the constant vector and then globally added together. If
we multiply m a once again by the constant vector we will
get mm. Finally, mil is obtained by multiplying m,l by the
constant vector. This can be summarized to:

64500 MAPP instructions
112 pCtrl instructions "load and add loops"

This yields a total of approximately 70000 MAPP
instructions, which in a 4MHz system corresponds to 60
framesls.

Given the 6 moments the total area will be m m We can
further compute the center of and!, and the slope
of the principle axis, 0.

3.2 Segmentation and moment

The previous moment calculation computes the moments
of the whole image as if it contained only one object.
However, if we want to compute the moments for several
objects we have to perform a segmentation. The idea is to
scan the image vertically and to make use of the global logic
unit, GLU, to enable a run-length, R-L, coding of the
image. The reason to perform a R-Lcoding of the image is
to check the connectivity between objects. furthermore, the
moments can easily be obtained from the R-Lcode. Figure
2 shows that by keeping the previous row we can see if two
objects becomes one or if an object splits into two
branches. We now keep a list containing all objects and
their moment data. If two objects turn up to be one object
the moment data are added together and all references to
the second object are changed to the first object.

Figure 2

Each object has 6 moment variables mm, m01, m02, m10,
mll, and mm. They are incremented as follows, given that
we are at row R, with an object that starts at position P: and
with a length of L.

After having scanned the whole image we end up with a list
of objects and their moments which can be used to
compute the center of gravity and the slope of the principal
axis.

4 Adaptivity

4.1 Introduction

Adaptivity to different light conditions is achieved by
utilizing the ability to COUNT the number of pixels which
have passed a certain threshold in one cycle. If the image is
over-exposed the Inthist diagram (the integrated
histogram) might look as shown in Figure 3(a). If on the
other hand the image is under-exposed Inthist would look
like Figure yb). The idea behind an adaptivity routine for
MAPP2UW) is to change the exposure time so that X % of
the pixels have the pixel value Y or higher, see Figure 3(c).

Figure 3

The number of pixels which have the pixel value Y or
higher is acquired by comparing the analogue value of the
pixel with Y followed by reading the "COUNT status.
This is done row wise, before the normal AID-conversion
is started.

4.2 Mathematical description

An image distribution can be modelled by the Rayleigh
distribution:

In the MAPP system the pixel value is measured as the
voltage over the photo diode which is pre-charged at a
certain time. The relation between voltage and exposure
time is given by (3). The voltage over the photo-diode can
not be negative which means that all pixel values
corresponding to a negative voltage are mapped to V = 0.

To find the optimal exposure time we compute the squared
difference between P(x) and a linear Inthist = (xla x l a & 1

x > a), (4) and its derivative (5) which is equal to zero when
(6). We can now estimate a value of P(x) in terms of a. For
instance, P(a/2) = 0,49, which means that 49% of all pixel
should have a pixel value below 128. This is more fully
discussed in 121.

?b control the exposure time we can adjust the offset and a
wait loop within the main loop. The exposure time is then
the time from the precharge until the photo diode is read
out as shown in the following program:

while (TRUE) {
for(i=O; i e 2 5 6 ; i + +) {

reset-row(i + m);
read-row(i);
compute();
wait(n);

1
Update(m.n);

1

The time to perform one inner loop when n = 0 is t, and
each wait loop takes tb which in the general case, for a given
offset = m and n means an exposure time as,

For a given x the number of pixels which have passed the
threshold is shown in (8) leading to (9).

N 1 c2 In-- =
M 2 t i ,

For a given ttOt and its corresponding N = Nl the optimal
value of N is acquired by adjusting tt,t as in (10).

The or value is a correction factor which compensates for
differences between the model and the actual image. New
value of m and n are obtained first from (10) and then from
(11) and (12). This is described in [2] .

This is done to ensure that we do not use a longer wait loop
then necessary (13). The reason to do so is that the offset
value do not alter the frame rate whilst the wait loop slows
it down.

5 Conclusions
We have briefly described the architecture and functions of
the smart vision sensor MAF'P2200. We then showed
examples of the assembler syntax which forms the basis of
the software development. ' k o application examples were
given which demonstrated the generality of the processor.
Finally, we showed that adaptive exposure control can be
implemented very easily in MAPP2U)O.

Acknowledgement
The authors would like to thank Jan-Erik Strcmberg for
valuable discussions regarding automatic control of the
exposure adaptivity.

References

[I] Astrom A., A Smart Image Sensor: Evaluation and
Desceion of PASIC., Lic Thesis, Linkiipings
University 1990.

[2] h o r n A., Forchheimer R., MAPP22OO Smart
Vision Sensor: Programmability and Adaptivig ,
Internal Report, Linkoping, Sweden, 1992.

[3] Chen K, Fast Algorithm for the Calculation of Image
Moments in a Linear Processor Army, Internal
Report, Linkoping, Sweden, 1988.

[4] Danielsson RE.. Generalized and Separable Sobel
Operator, Internal Report LiTH-ISY-1-0975,
Linkoping, Sweden, 1989.

[5] Forchheimer R., Ingelhag I?, Jansson C.,
MAPP2200, a second generation smart optical s e w ,
SPIE Vol 1659 (1992)

