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Abstract 

This paper briefly describes the architecture and functions 
of the smart vision sensor MAPP2200 and shows examples 
of the assembler syntax which forms the basis of the 
software development. ?tuo application examples are given 
and an implementation of adaptive exposure control for 
MAPP2UX) is presented. 

1 Architecture 

1.1 General 

MAPPZUX) Vision Sensor is an optical sensor component 
that includes a digital image processor. Samples of this 
component have been available since August-91. A block 
diagram of MAPP is shown in Figure 1. For a more 
detailed description of MAPP see [S]. 
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Figure 1, Block diagram of MAPPZZOO 

1.2 Sensor 

The sensor area occupies about half of the silicon area and 
consists of 256 rows with 256 photo-diodes each, see upper 
part of Figure 1. The image data is read out row-wise in 
parallel to an analog register (PD). This register content 
can be converted into digital values in two ways. Either to 
binary values using a threshold voltage, or to gray scale 
values using the internal A/D-converter (AO-A7). This 
AID-converter can be programmed to convert with 

different precision, i.e. from 1 bit up to 8 bits, dependingon 
the requirements on speed and precision. 

1.3 Processor and instruction set 

The lower parts of Figure 1 show the digital section of 
MAPP. The shift register S&S7 is an 8 bit bidirectional 
shift register which can be used for external 
communication of data or for communication between 
processors. The processor block consists of 256 parallel 
processor elements (PE). The internal memory for each PE 
is % bits, RO-R95. The arithmetic logic unit consists of 
three parts. The Global Logical Unit, GLU, performs 
global operation such as LFILL which sets all the 
accumulator bits to 1 which are to the right of the leftmost 
1. The Neighborhood Logical Unit, NLU, can be set to 
apply an arbitrary 3 by 1 binary kernel using the PE and its 
two neighbors. For instance, (1x0) means that if the left 
neighbor is 1 and the right is 0 the result is 1, otherwise 0. 
The X stands for don't care. The Point Logical unit, PLU, 
operates locally in each PE. 'Ifrpical operations are AND, 
OR, XOR, and so on. The following list is a brief summary 
of all instructions in MAPP. 

PLU LD, AND, OR, XOR, LDI, ANDI. ORI. 
XORI. ADD, ADC, ADA, ANDC, ORC, XORC, 
MUXC 

NLU Arbitrary (a,b,c) ; a.b.c E 1.0,X 
CLU MARK, LMARK, RMARK, LRMARK, FILL, 

LFILL, RFILL, LRFILL 
Transfer ST {A.C.AX,PD}.S/R, ST S,S/R, ST R,S 
Misc SETR(ow), SETV(o1tage). SETPD, SETAD, 

SETB(oundary), SAVE, LOAD, ROL. ROR, 
INITAD, SRES, INITPD. READPD 

By reading the status register COUNT we obtain the 
number of 1's in the accumulator which, we will show, is 
useful in many applications. 

2 Programming environment and syntax 

2.1 Syntax 

The M A P P m  is programmed by using a MAPP2UX) 
Assembler for the MAPP instructions and a C program for 
the controlling process. A simple MAPP program may 
look like this: 



.FILE test.h 

.PROC M-init 
SETAD STEP1 
SETR 0 

. ENDP 

.PROC M-run 
INITPD,+ ; Reset this line 
READPD ; Read next line 
INITAD ; A/D-conversion 
.ITER(8 i) ; From A/D-reg to S-reg 
LD A(0 i) 
ST A.S(O i) 

. ENDI 
. ENDP 
. ENDF 

When this source code is run through the assembler the 
program is converted into arrays of short integers, i.e. 16 
bits codes. Each procedure generates its own array. For 
example, the output file in the above example would 
contain two arrays of short integers called M-init and 
M-run. This file is then included in the final C program: 

#include "test .h" 
#include "mapp. def 
main() 

{ 
int i; 
while (TRUE) { 

writecode(M-init); 
for (i-O;i<256;i++) { 
writecode(M-run); 
Store(0.i); /* Output device */ 

1 
1 

1 

The include file mapp.def contains the definitions of 
writecode, Store, and other MAPP driver routines. 

Macros are used to simplify and minimize MAPP 
programming. The macros are expanded using the C 
preprocessor. The macro must be defined within the 
program, or in a file included in the MAPP program. A 
standard macro library has been developed which contains 
arithmetics and filter functions. 

2.2 Bit-serial programming 

As MAPP does not have a multi-bit ALU we have to 
perform all arithmetics in a bit-serial fashion. A 
MAPPUOO routine which adds two b-bit operands looks 
like: 

LD R(X) 
ADD R(Y) 
. ITER (b -1 addi) 
AM: R(X 1 addi) 
ADA R(Y 1 addi) 
ST A.R(Z addi) 

. ENDI 
ST C.R(Z b -1) 

In order to aid the MAPPUOO programmer a number of 
bit serial routines have been dweloped. Examples of 
routines in this library are: add, subtract, add 2-comp, sub 
2-comp, mult, mult 2-comp, multiplex, etc. 

2.3 2D filters 

As MAPP is a linear array of processors we only have 
access to one line of pixels at a time. 'Ib implement 2D 
filters we have to use the registers as temporary storage for 
previous rows. This means that we need to store a number 
of previous row/results to obtain the following rows. This 
type of processing is called Row-parallel Pipe-lining, see 
[I]. A typical C program may look like the one in section 
2.1. The include file test.h again contains two MAPP code 
sequences, M-init and M-run. The M-init resets the 
registers used and sets up the ADC etc. The M-run 
contains the code for the filter. A typical macro call from 
the standard filter library in MAPP looks like this: 

IN is the location of the input register group to the routine. 
PREV and PPREV are two previous results which must be 
stored between each run. OUT is the location where the 
result is put. TMP is the location of the temporary memory 
needed. b is the number of bits used in the routine. The 
routine uses a 3x3 lowpass filter which can be separated 
into4 additions, see [4]. It is veryeasy tocombine a number 
of macros. This enables us both to perform different 
operations and to use larger kernels. For instance: 

In this case the output from LOWPASS is passed directly 
to LAPLACE2 Note that we can use the same temporary 
memory in both routines. The effect we get is that we will 
have more smoothing in the image as we now apply the 
following filter: 

3 Examples 
3.1 Moment calculation 

This routine is based on the ideas in [3] which describes a 
moment calculation performed on an SIMD array. The 
computation is separated into a vertical and a horizontal 
computation. The input of the image. as a binary image 
through the comparators, is done during the vertical 
computation where the moments mfi mXl, and m d  are 
computed. None of these computations are performed as 
multiplications as they can be separated into additions. 
Each PE computes the moments mfi mxl, and m d  in its 
own column. When the vertical scan is completed we have 
to perform the horizontal computation in order to obtain 



the moments moo, mol, moz, mlo, mil, and mm. The first 
three of these moments can be obtained as a horizontal 
summation of md,  m,l, and md,  which is done using the 
powerful count feature. For example, if m d  is placed in 
register 0 to N-1 we compute mm as: 

mOO = 0; 
for (i=O;i<N;i++) { 
writecmd(LD I i); 
mOO += (COUNT)<<i; 

1 

To compute mlo, mlb  and m a  we have to perform a 
multiplication followed by the global addition described 
above. The value to multiply by will be a constant vector 
ranging from 0 to 255, corresponding to PE 1 to 256. By 
using certain tricks the constant vector can be generated in 
approximately 256 cycles. To obtain mlo, m d  is multiplied 
by the constant vector and then globally added together. If 
we multiply m a  once again by the constant vector we will 
get mm. Finally, mil is obtained by multiplying m,l by the 
constant vector. This can be summarized to: 

64500 MAPP instructions 
112 pCtrl instructions "load and add loops" 

This yields a total of approximately 70000 MAPP 
instructions, which in a 4MHz system corresponds to 60 
framesls. 

Given the 6 moments the total area will be m m  We can 
further compute the center of and!, and the slope 
of the principle axis, 0. 

3.2 Segmentation and moment 

The previous moment calculation computes the moments 
of the whole image as if it contained only one object. 
However, if we want to compute the moments for several 
objects we have to perform a segmentation. The idea is to 
scan the image vertically and to make use of the global logic 
unit, GLU, to enable a run-length, R-L, coding of the 
image. The reason to perform a R-Lcoding of the image is 
to check the connectivity between objects. furthermore, the 
moments can easily be obtained from the R-Lcode. Figure 
2 shows that by keeping the previous row we can see if two 
objects becomes one or if an object splits into two 
branches. We now keep a list containing all objects and 
their moment data. If two objects turn up to be one object 
the moment data are added together and all references to 
the second object are changed to the first object. 

Figure 2 

Each object has 6 moment variables mm, m01, m02, m10, 
mll, and mm. They are incremented as follows, given that 
we are at row R, with an object that starts at position P: and 
with a length of L. 

After having scanned the whole image we end up with a list 
of objects and their moments which can be used to 
compute the center of gravity and the slope of the principal 
axis. 

4 Adaptivity 

4.1 Introduction 

Adaptivity to different light conditions is achieved by 
utilizing the ability to COUNT the number of pixels which 
have passed a certain threshold in one cycle. If the image is 
over-exposed the Inthist diagram (the integrated 
histogram) might look as shown in Figure 3(a). If on the 
other hand the image is under-exposed Inthist would look 
like Figure yb). The idea behind an adaptivity routine for 
MAPP2UW) is to change the exposure time so that X % of 
the pixels have the pixel value Y or higher, see Figure 3(c). 

Figure 3 

The number of pixels which have the pixel value Y or 
higher is acquired by comparing the analogue value of the 
pixel with Y followed by reading the "COUNT status. 
This is done row wise, before the normal AID-conversion 
is started. 

4.2 Mathematical description 

An image distribution can be modelled by the Rayleigh 
distribution: 

In the MAPP system the pixel value is measured as the 
voltage over the photo diode which is pre-charged at a 
certain time. The relation between voltage and exposure 
time is given by (3). The voltage over the photo-diode can 
not be negative which means that all pixel values 
corresponding to a negative voltage are mapped to V = 0. 

To find the optimal exposure time we compute the squared 
difference between P(x) and a linear Inthist = (xla x l a  & 1 



x > a), (4) and its derivative (5) which is equal to zero when 
(6). We can now estimate a value of P(x) in terms of a. For 
instance, P(a/2) = 0,49, which means that 49% of all pixel 
should have a pixel value below 128. This is more fully 
discussed in 121. 

?b control the exposure time we can adjust the offset and a 
wait loop within the main loop. The exposure time is then 
the time from the precharge until the photo diode is read 
out as shown in the following program: 

while (TRUE) { 
for(i=O; i e 2 5 6 ;  i +  +) { 

reset-row(i + m); 
read-row(i); 
compute(); 
wait(n); 

1 
Update(m.n); 

1 

The time to perform one inner loop when n = 0 is t, and 
each wait loop takes tb which in the general case, for a given 
offset = m and n means an exposure time as, 

For a given x the number of pixels which have passed the 
threshold is shown in (8) leading to (9). 

N 1 c2 In-- = 
M 2 t i ,  

For a given ttOt and its corresponding N =  Nl the optimal 
value of N is acquired by adjusting tt,t as in (10). 

The or value is a correction factor which compensates for 
differences between the model and the actual image. New 
value of m and n are obtained first from (10) and then from 
(11) and (12). This is described in [2] . 

This is done to ensure that we do not use a longer wait loop 
then necessary (13). The reason to do so is that the offset 
value do not alter the frame rate whilst the wait loop slows 
it down. 

5 Conclusions 
We have briefly described the architecture and functions of 
the smart vision sensor MAF'P2200. We then showed 
examples of the assembler syntax which forms the basis of 
the software development. ' k o  application examples were 
given which demonstrated the generality of the processor. 
Finally, we showed that adaptive exposure control can be 
implemented very easily in MAPP2U)O. 
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