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ABSTRACT 

111 this work a nlassively parallel VLSI architec- 
tu re  is discussed: PAPRICA, a mesh connected ma- 
chine that can also simulate a pyramidal architec- 
ture. Its computational paradigm is based on the 
lnatchiug operator as defined in nlathematical mor- 
phology. This description is equivalent to the Cel- 
lular Automata paradigm, which can simplify the 
design of PAPRICA applications in low-level vision. 
PAPRICA is currently simulated on a Unix work- 
station connected to a Connection Machine CM-2, 
while the hardware is under testing. 

INTRODUCTION 

Research in computer architectures for robotics 
has given birth to a wide variety of useful structures 
for parallel image processing. Mesh arrays, pyra- 
mids, Ilypercubes are only a few examples within the 
domain of massive parallelism. Even though none of 
these architectures is a panacea for solving the whole 
vision problem, the availa.bility of processing power 
can make possible to solve subproblems in real-time. 
The architecture presented in this paper, PAPRICA, 
is an example of such an approach. 

PAPRICA (PArallel PRocessor for Image Check 
a.nd Analysis), is a massively parallel VLSI architec- 
ture (41. It is a special purpose SIMD architecture, 
with a two-dimensional interconnecting mesh for in- 
terprocessors communication. One of the main goals 
in the development of PAPRICA is to keep the sys- 
tem powerful but simple enough to allow low-cost 
production. 

A motivation for this approach is the use of PA- 
PRICA in the fra~nework of a pan-european project, 
PROMETHEUS, whose goal is is to develop "smart" 
sensors for assisting car drivers [I]. To this end, a 
Computer Vision system plays an important role, 
since most of the information available when driving 
has visual nature. A vision system, integrated into 
the sensor, should be able to provide the driver many 
different kinds of support, such as the detection of 
obstacles or the supervision in case of overtaking. 

Beside the real-time requirement, the cost of such 
a stnart sensol is an i~nportant point: it should be 
comparable to the cost of other car instruments. 

This argument leads to  consider the use of PAPRICA 
in the PROMETHEUS framework for Image Pro- 
cessing. The architecture is indeed capable of per- 
forming, in real time, many low-level tasks relevant 
to visual analysis of traffic scenes. 

In the next paragraphs after the presentation of 
the system architecture and its computational model, 
we will discuss PAPRICA simulator as well as some 
applications. 

SYSTEM ARCHITECTURE 

The PAPRICA system has been designed as a 
specialized coprocessor to be attached to  a general 
purpose host workstation and, as a whole, comprises 
4 major functional parts namely the Image and Pro- 
gram Memories, the Processor Array (PA) and the 
Control Unit (CU). The relationships between these 
units are shown in figure 1. 
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Figure 1: Block diagram of the PAPRICA system 

The first prototype of the PA is composed of 
an array of 4 x 4 chips, each of them containing a 
sub-array of 4 x 4 Processing Elements (PE). In the 
present implementation, the PA is a 16 x 16 square 
matrix of I-bit PEs each one with full 8-neighbors 
connectivity. 

The maximum configuration for PAPRICA sys- 
tem, will be achieved in the next version, and con- 
sists of a square grid of 1024 PEs. The inter-processor 
communication network is an enhanced version of 
the classical 2-dimensional mesh connected network 
(MC2), in which only the 4 main links (Top, Bottom, 
Left, and Right) are implemented in hardware. 



Since the number of PEs is normally less than 
the number of ima.ge pixels used in generic low-level 
Image Processing applications, a significative part 
of the controller has been dedicated to the imple- 
mentation of virtual processors. Due to the little 
memory available for each PE,  it is not possible to 
use the virtual processor approach implemented on 
the Connection Machine [9], where the computation 
is serialized within each processor (which contains 
several data belonging to several pixels). PAPRICA, 
in fact, serializes the computation in windows: the 
processing array is loaded with a sub-window of the 
image, then the computation is performed until a 
special instruction (UPDATE) is reached, and finally 
the result is stored back into a different image plane. 
These steps are iterated until all the sub-windows 
have been processed. PAPRICA control unit drives 
the sequential scanning of the image sub-windows. 
The main problem with this concept of virtual pro- 
cessors is mainly due to the limited dimensions of the 
PA, where the border processors can't access their 
complete neighborhood. In fact, after the execution 
of an instruction which requires full (3  x 3) neigh- 
borhood access, the value stored in the border pro- 
cessors of the PA is no more valid. Thus, the next 
windows that will be transferred into the PA will 
be partially overlapped with the previous one, in or- 
der to correctly evaluate the previously invalidated 
resl~lts. 

PAPR.ICA Image Memory can be rearranged run- 
time using the MEM0R.G instructions, which set the 
i~rlage height, width and deepness. Moreover, since 
for each parallel computation two sequential accesses 
to the Image Memory are required, it is possible to 
fetch and store back the datain a useful way. In fact, 
the data to be transferred into the PA can be non 
logically adjacent to each other, allowing to under- 
sample the image or to increase its resolution. This 
behavior is controlled by a set of registers which can 
be altered run-time. The possibility to reduce and 
increase the image dimensions allows a very efficient 
use of PAPRICA architecture as a pyramid. More- 
over, some simple software algorithms allow also to 
sin~ulate any kind of pyramidal interconnections be- 
tween the different pyramid layers. 

Performance analysis: The processing speed 
S,, is a function of parameters that depend on the 
system technology and architecture (the number of 
l'roccssi~~g Elerrlents Q2, the nlerrlory cycle time TM, 
the PA cycle time Tc), on the particular computa- 
tional task (the length of the program L, and the 
number of Graphic Operators G in the program, 
namely the number of operators that require full 
neigl~horhood access), and on the number and dis- 
pla.cement of special instructions (UPDATE). The pro- 
cessing speed Spr is defined as the number of pixel 
processed in the time unit for a given sequence of in- 
structions or as the number of pixels over the total 
time needed for processing. 

If the whole image to be processed fits into a PA 
of QZ elements, the time required for the processing 

will be the sum of three components. First, the time 
Q2TM required to load the array from the Image 
Memory whose access time is TM; second, the time 
LTc required to execute L instructions, each with an 
elementary time Tc; and third, another time Q2TM 
to store back the results. S, will then be given by: 

Since Tc and TM are of the same order of magnitude, 
if L << 2Q2, Spr reduces to: 

showing that the computational time is bounded by 
the I/O time. If, on the other hand, L >> 2Q2, then 
equation (1) reduces to: 

showing that for processing bounded problems the 
speedup is linear with the number of processors. 

Moreover, considering also the fact that each P E  
in a border site in the PA cannot perform neigh- 
borhood accesses and thus it cannot produce signi- 
ficative results, each graphic operator reduces the 
significative area ( Validity Area). Equation (4), ob- 
tained after few algebraic manipulations, shows the 
dependence of S,, from the various known parame- 
ters; nupd indicates the total number of UPDATE in- 
structions into the program. 

Thus in a given program with L instructions, G 
of them being graphic operators which require full 
neighborhood access, it can be shown [2,3,4,5] that 
the maximum processing speed becomes: 

This result shows that in the general case, where the 
number of processors is far smaller than the image 
pixels and a large number of graphic operators is 
used, the speedup is proportional to Q, that is the 
square root of the number of PEs. 

The current hardware implementation of PAPRI- 
CA architecture is composed by 16 x 16 PEs and 
has a memory cycle time TM of 250 ns and an array 
cycle time Tc of 500 ns; the typical values for the 
application-dependent parameters are: L z 200 + 
300 and G 20 + 40; the correspondent computa- 
tional speed is about 70 kpixel/s, while the maxi- 
mum computational speed (achieved with G = 0) is 
about 5 MegaPixel/s. Thus, the time required to 
process a 256 x 256 binary image with the architec- 
ture depicted above, in the general case is given by: 

while the lower bound with G = 0 is T = 0.013 s. 



COMPUTATIONAL PARADIGM 

PAPRICA computational paradigm is based on 
the concept of matching operator 0,  derived from the 
hit-miss tmnsform described in [12]. This is a rather 
general approach which includes the other morpho- 
logical operators as special cases [8].  Having defined 
the N-dimensional frame TN C zN as a convex, 
size-limited, "rectangular" subset of the discrete Eu- 
clidean N-space .ZN, a simple N-dimensional match- 
ing f l emfn l  is a couple Q = ( g o ,  Ql) ,  where both 
Qo,  Q1 c .Fy with the constraint that Q o n  Ql = 0.  
An clem.rn,tary nintching with a, simple ma.tching el- 
ement is defined as: 

~ @ Q f i { y E 3 ~ 1 ( y + b ) E A  and ( y + c ) $ A  

for every b E QI,  c E Qo ( 7 )  

or, in terms of the erosion operator: 

A cornplernentrd matching 0' is also defined as: 

A conlposite matching with a matching list Q L  = 
{ & I , .  . . , Q k ,  . . . , } is the union of elementary match- 
ings: 

A @  Q L  f i U ( A @ Q i )  (10 )  
1 

A simple 3x3 bidimensional matching element Q can 

be sketched using the following 

where "x" is either 0 ,  1 or - if 
pixel of the matching element is an element of go, 
Q1 or of none of the two. The center of the matrix 
is the pixel (0,O) of Q. A composite matching can 
be sketched as a list of simple matching operators: m,m[ l{j--# 

Q C Z X X X  X X X  ,..., X X X  ,... 
X X X  X X X  X X X 

where li E [2 ,4 ,8] .  The superscript declares that 
a complementary matching 0' must be used in place 
of 8 for that specific element, while the numeric con- 
stant Ii is a short form for the list of li possible 
rotations of the elementary operator by degrees. 

PAPRICA can perform matching operations us- 
ing a fixed set of structuring elements, which form 
the instruction set. Some simple examples are given 
by the north translation operator ( N M O V ,  expressed 

by the following structuring element: ) or 
. . 
- 1 . 1 -  

bv the vertical ex~ansion o ~ e r a t o r  (VEXP. ex~ressed , . 
b; the following ;st: , 2  ), or by the 

border extraction operator (BOR, 8 - 1 o ). 

The instrnction set can implement any structur- 
ing element using simple compositions following the 
mathematical morphology algebra [4].  

A single Assembly instruction is formed by a con- 
catenation of two orthogonal operations: a graphic 
operator (GOP) and a logical operator (LOP): 

LD = G O P ( L l )  [ L O P  L z ]  [%.4] 

The former (GOP) operates on a first source layer 
( L 1 )  of an image ( 3  x 3 neighborhood), while the 
latter co~nputes a diadic boolean function between 
the result of GOP and the central pixel of a sec- 
ond source layer ( L 2 )  The result is stored on the 
destination lay fr  ( L o ) .  %A is an optional modifier 
which can be r~setl to accnmr~latr (ORing) the result 
of the operation on layer LO, which is used as an 
accumulator. 

As an example, the synthesis of the matching el- 

is depicted using mathematical 
I I I Y I  

morphology properties, reducing it to a sequence of 
simple matchings which can be easily implemented 
with PAPRICA instruction set and translated to 
PAPRICA Assembly language. The matching ele- 
ment Q can be decomposed in its two subsets Qo 
and Ql , which can be decomposed again: Qo can be 
rewritten as Qo = Qg @ &f where the two matching 
elernents 

have been chosen since they belong to PAPRICA 
instruction s ~ t .  The second part of the d~finition i n  
(8) can be written as follows 

and for the chain rule property [8] (pag. 540) it can 
be rewritten as: 

Since in this case it is possible to substitute the ero- 
sion operator @ with the matching operator 8, the 
previous becomes 

AC 8 Qo = ( A C  8 &;)  (3 & f  ( 1 5 )  

and can be easily expressed using PAPRICA assern- 
bly language notations as follows: 

Using the ( 9 ) ,  the previous expression can be coded 
in the following PAPRICA assembly program: 

where L1 is the layer containing the input binary im- 
age, L2 is the output layer, and L t  is a temporary 
layer. WMOV, VERS, and the - symbol indicate respec- 
tively a west translation, a vertical erosion and the 
inversion of the result. 

Using similar mathematical morpllology proper- 
ties, the first part of the definition in (8)  can be 
rewritten as 



where 

The complete sequence of PAPRICA Assembly in- 
structions is shown in the following: 

where L1 is the layer containing the input binary im- 
age, L2 is the output layer, and Lt is a temporary 
layer. SMOV, EMOV and the '& Li' symbols indicate 
respectively south and east translations, and a logi- 
cal AND with the Li layer. 

The final PAPRICA assembly code used to syn- 
thesize a matching operation with the matching el- 
ement shown above is the following: 

PAPRICA SIMULATION AND TUNING 

PAPRICA programming environment gives the 
possibility of writing application programs using C 
language, with the help of two sets of functions: 

the System Library is a standard set of func- 
tions handling the interaction between the ap- 
plication and the physical or emulation layer; 

the Macro Library is an open set of functions 
that the user can use and augment to gener- 
ate the PAPRICA code required by the appli- 
cation. These functions parametrically build 
segments of PAPRICA code to perform a spe- 
cific task. 

The environment has been designed to isolate the 
applications from the hardware details of the imple- 
mentation. In fact, the same program can run on 
different platforms: 

PAPRICA hardware; 

software simulator running on a UNIX work- 
station or on an MS-DOS PC; 

software simulator running on a Connection 
Machine CM-2. 

The low-level and hardware-dependent process- 
ing units are accessed by the high-level applications 
through a few calls to a standard interface. With 
this solution, the software simulators and the hard- 
ware itself are completely interchangeable, without 
any modifications to the high-level applications. 

To overcome the speed limitation of the serial 
simulator, a parallel version was written for the Con- 
nection Machine CM-2. The parallel operations, vir- 
tualized in the first version of the simulator, are per- 
formed simultaneously, reaching a considerably high 
processing speed. The high performances of the CM- 
2 simulator allow both the study, development, and 
analysis of PAPRICA applications, and the study 
and optimization of the instruction set for the next 
version of PAPRICA. 

The two main reasons that led to the choice of 
the CM-2 as the hardware platform for the efficient 
implementation of PAPRICA simulator are: 

r the CM-2 embeds PAPRICA interconnecting 
topology, and 

r PAPRICA assembly language and the CM-2 
C-PARIS are semantically equivalent. 

The parallel version of the simulator was written 
using C* language and it is fully compatible with the 
serial version. The user interface is the same and all 
the utilities written for the serial version work with 
the parallel version. 

An operator based on Kirsch [lo] and Prewitt 
[11] operators was used as test for the performances 
of the simulator, using a 256 x 256 pixels image with 
256 gray levels. Using the serial version of the sim- 
ulator on a Sun SPARC workstation, the execution 
of the filter takes slightly less than 30 minutes. The 
parallel version needs only 30 seconds of CM-2 to 
perform the same operation. An es t~mate  of the per- 
foiniance of PAPRICA board with the same compu- 
tation gives around half a second. Using the CM-2 as 
a simulator of PAPRICA imposes some constraints 
on the algorithms implementation (such as the vir- 
tualization mechanism), giving a speed penalty. The 
same filter executed on the CM-2 directly (without 
the simulator) takes about 0.2 seconds. 

The current version of the user interface (called 
PAPRICA Graphic Debugger) is based on Xll-R4 
windowing system. This environment was selectetl 
both for its wide availability on different workstation 
platforms, and for the associated comn~unication fa- 
cilities. For example, the Debugger which uses the 
CM-2 simulator or PAPRICA hardware can be run 
from a remote host through the net, while the re- 
sulting images can be displayed on any host running 
X11. 

PAPRICA Graphic Debugger is written using 
standard calls to PAPRICA library and allows di- 
rect interaction with the coprocessor board. Using 
the Debugger it is possible to load the program mem- 
ory from a file written in PAPRICA assembly lan- 
guage, or to modify its contents "on the fly", using 
the included one-line assembler. Programs can be 
executed at  full speed or in single-step mode. The 
Graphic Debugger allows to load the image mem- 
ory from files in several standard formats. It is also 
possible to display the contents of this memory in 
graphics windows with selected color palettes; on 
these windows zoom and pan operations are allowed. 



PAPRICA APPLICATIONS 

Fro111 t.he point of view of designing algorithms, 
it is more convenient to  describe PAPRICA opera- 
tions in t e r ~ n s  of the Cellular Automata ((:A) coni- 
~ ) ~ ~ t : i t i o ~ l a l  paratligrn [5,6]. A (:A [I31 is a discrete 
tlynaulica,l system cha.racterized by the following ba.- 
sic components: 

a regular network R of cells, whose connectiv- 
ity defines the  concept of topological neighbor- 
hood"of a cell. A neighborhood of n cells u € R 
is designed by I,,,,. 

a a finite set H,  whose elements characterize the  
s ta te  I 1  E H of each cell u E R. 

a tlvfulition of the system's dynamic in terms 
of a local and uniform fr~nction of the  values 
of the 11 cells of I ,,,, i.e. F : H" + H. The  
function updates the value of each cell u E R 
at tinle step t ,  according t o  the values of the  
crlls in the ~leighborhood of 11 a t  the  previous 
t imr step Thus  

As it appears from the definition, the C A  is a 
compnt,ational paradigm for massively parallel com- 
putation on a regular mesh, where each processor 
corres~)onds t o  a cell u E R, the  memory states a re  
described by the elnients of H,  and the  computa- 
tional steps are the function F. Since PAPRICA is 
a massively parallel system it is possible to  describe 
its operations in terms of CA. In fact, the  mathernat- 
ical morphology operations using size-limited struc- 
turing elements are equivalent t o  the description in 
terms of CA. 

Despite the fact tha t  each PAPRICA P E  is di- 
rectly connected only t o  i ts  8 neighbors, using only 
the direct links and boolean operations within a sin- 
gle P E ,  PAPRICA can synthesize via software any 
CA with arbitrary neighborhood (i.e. mathemati- 
cal ~norphology operation with any structuring ele- 
ment) .  

According t o  equation (5) the  maximum process- 
ing speed Spr decreases with the increase of G ( tha t  
is a function of the neighborhood dimensions). It is 
worthwhile t o  note t h a t  even with a very high neigh- 
borhood dimensions (about  60 x 60, corresponding 
to  G = 30), a 256 x 256 binary image is processed 
in less than  one second, as  shown in equation (6). 

CONCLUSIONS 

of information), o r  the exploitation of higher level 
knowledge in the  algorithm design. 

PAPRICA simulator was successf~rlly used for 
~rnple~nenting several filtering algorithms [7]. More- 
over i t  was also implemented an algorithm f o ~  ex- 
tracting the  road l)or~ndaries in a sequence of images 
taken by a moving car 151. This algorithm makes use 
of a feature metric in order t o  identify the bound- 
aries, taking into account domain specific knowledge, 
such as the  position of the  focus of expansion, mea- 
sured by means of the  optical flow. 
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For applications t o  low-level vision problems, the  
C:A paratlig~n can map i~nmediately all kernel-like 
filtering ol)era.tions [T,]. Examples of this class of op- 
crations are t,he enhancements based on the pixels 
gray valr~cs, gradient based filters, convolr~tion op- 
erators. sn~ooth ing  operators. Other operations re- 
quire either the serialization of part of the  a.lgorithms 
(w11c.n there is the need of long-distance propagation 






