
MVAJ90 IAPR Workshop on Machine Vision Applications Nov. 28-30,1990. Tokyo

ANATOMY OF A PAGE READER

Henry S. Baird

AT&T Bell Laboratories
600 Mountain Avenue, Rm 2C-557

Murray Hill, New Jersey 07974 USA

Abstract
An experimental machine vision system that reads pages of
printed text is described, with particular attention to features
which permit it to cope with a variety of languages. We have
attempted to uncouple sources of variation in the input - irnag-
ing defects, page layouts, sizes of text, symbol sets, font styles,
linguistic contexts, and transliteration encodings - so that each
can be managed by an independent subsystem. In pursuit of this
goal, new algorithms have been required. For example. page
layout analysis is virtually language-independent due to the use
of a global-to-local strategy; but this demanded unusually fast
and accurate algorithms for skew- and shear-correction and for
analysis of the structure of white space. To permit arbitrary
combinations of symbol sets, font styles, and image defect distri-
butions for specialized classifiers, we developed a hybrid
structuraVstatistica1 recognition technology, trained by examples
generated by a pseudo-random image defect model. Character
segmentation is driven by classifier confidence scores, with the
result that language-specific rules are rarely needed. Linguistic
context, such as provided by dictionaries, is exploited by a series
of data-directed filtering algorithms in a uniform and modular
manner.

1. Introduction

This is an overview of an experimental printed-page reader
that has been applied to multiple-font English text and
fixed-font Swedish, Tibetan, chess notation, and mathemat-
ical equations. The demands of versatility - the ability to
adapt the system to diverse writing systems with a
minimum of manual effort - have strongly influenced the
system's architecture. An overview of an early version of
the reader appeared as [KPB87]; recent details of algo-
rithmic comoonents are oublished elsewhere (references are
cited belowj.

Automatic page readers must cope with many kinds
of variability in their input, including imaging defects, lay-
out geometries, sizes of text, symbol sets, font styles,
linguistic contexts, and transliteration codes. An overall
engineering objective has been to decouple these from one
another, so that each can be attacked independently. To
achieve this, new algorithms have been required at several
stages. For example, thanks to a global-to-local strategy,
page layout analysis is virtually language-independent -
but this strategy demands fast and accurate algorithms for
skew- and shear-correction and the analysis of white space.

Our approach to symbol (character) recognition is a
hybrid of structural shape analysis and Bayesian statistical
classification, and is trainable by example, usually off-line.
Shape features are constructed (not merely selected) during
an automatic analysis of the training set; as a result, accu-
rate classifiers may be rapidly built for diverse symbol sets.
A pseudo-random image defect generator permits the
automatic construction of classifiers given as few as one
sample image per symbol, which may be either an ideal
prototype from a machine-legible font description or an
example lifted from a document image. Thus the manual

effort to learn a new symbol set or font style is reduced to
a minimum. The classifiers exhibit strong generalization
across font style differences, text sizes, and commonly-
occurring image defects.

The algorithms for layout analysis and symbol recog-
nition are applicable to any writing system in which the
symbols are rigid and disconnected (spaced apart from one
another), most of the time. Where characters do touch,
segmentation is controlled by classifier confidence scores,
so that language-specific rules are needed only for cases
that are ambiguous by shape. Other linguistic context,
such as provided by dictionaries, punctuation rules, and
other lexical constraints, is exploited in a uniform data-
directed manner.

Table-driven algorithms have been used wherever
possible. As a result, the programs for recognition of sym-
bols and inference of text size and baseline possess no
language-dependent special cases. Linguistic context may
be specified by arbitrary word-lists and general-purpose
regular-expression patterns. Final transliteration into an
output encoding (such as ASCII) is via user-specified
tables.

Section 2 defines the class of problems for which the
page reader is designed, and gives an overview of the sys-
tem. Page layout analysis is discussed in Section 3, and
symbol recognition in Section 4. The exploitation of
linguistic context is described in Section 5, and the transli-
teration to coded and formatted output in Section 6. The
tools and data structures used are described in Section 7 .

2. Definition

The page reader accepts bilevel images (black characters on
a white background) of pages of machine-printed or
typewritten text. For the purposes of this paper, we will
assume that only a single language is present, and it is
specified in advance. The specification of a language
determines the symbol set, reading order, linguistic con-
straints, and transliteration rules. However, font styles,
text sizes, and page layouts will not be specified in
advance, at least in the most demanding applications. Of
course it is also useful to be able to construct custom
readers for higher accuracy on known symbols, fonts, and
defects.

The sequence of computation stages is as follows:
1 . geometric layout analysis: connected components

analysis, skew- and shear-correction, segmentation
into text blocks, line-finding within blocks, character-
finding within lines, and determination of reading
order;

2. symbol recognition: classification of characters by
shape, inference of text size and baseline (or top-line),
segmentation of lines into words by spacing, and

shape-directed resegmentation of characters within
words to handle touching and broken characters;

3. linguistic contextual analysis: segmentation of lines
into words by lexical means, exploitation of dic-
tionaries and punctuation rules, and enforcement of
inter-word consistency constraints;

4, logical layout analysis: partitioning blocks into sec-
tions, labeling sections by function, and reassembling
sections (across blocks) into reading order; and

5, transliteration: mapping the internal representation of
the analysis into an output character encoding (e.g.
ASCII or JIS), possibly annotated by format (e.g. troff
or SGML).

By design, each of these five stages operates as auto-
nomously as possible. Up to the present time, we have
been able to avoid feedback control paths among them. If
and when feedback control proves necessary, there will be
few software-engineering obstacles, since all stages use a
single, common data-structure.

We assume that within each page there is a single
alignment coordinate system, defined by the horizontal
skew and vertical shear angles; within it, all symbols are
expected to be upright (landscape layouts must be manually
specified, so that the image can be rotated before layout
analysis). Layouts must be Mar~hattan after alignment
correction: that is, they can be partitioned into isolated,
convex blocks (columns) of text by horizontal and vertical
line segments cutting through white space; this is a large
and useful class of layouts. The system knows in advance,
from the language specification, whether text lines within
blocks are horizontal or vertical, and, if horizontal,
whether reading order is left-to-right or right-to-left.
Within blocks, text sizes and line spacings may vary, but
each line is expected to have a single text size and baseline
(or top-line) location.

Writing systems are expected to be non-cursive and
disconnected: that is, their symbols are rigid and spaced
apart, at least nominally. In practice, symbols may
occasionally touch or overlap, giving rise to character-
segmentation problems which the system attempts to solve.
Writing systems meeting these criteria include Roman,
Greek, Cyrillic, Chinese, Kanji, Hangul, Hebrew, their
derivatives, and many others. Writing systems normally
not of this kind include Arabic, Devanagari, and their
derivatives.

At present, logical layout analysis identifies para-
graphs and suppresses garbled text; it will not be discussed
further. Algorithms to cope with graphics, line-drawings,
and photographs also will not be discussed.

3. Geometric Layout Analysis
The analysis of layout geometry follows a global-to-local
strategy [Bai88b], that is, greedy and guided by global evi-
dence. A non-backtracking sequence of model-refinement
steps is executed in an order constrained by dependencies
among model parameters and maximizing the statistical
support available at each step for inference of the parame-
ters. Experiments suggest that this is more robust than
bottom-up merging methods and more efficient than back-
tracking top-down methods, while requiring relatively little
a prior; information. In particular, the method requires no
prior knowledge of the symbol set, and only rough esti-
mates of the range of text sizes.

First, black 8-connected components are extracted.
On a typical page, approximately one in five pixels is
black, each run contains more than 10 black pixels, and
each component over 25 runs: so that, the number of com-
ponents is three orders of magnitude smaller than the
number of pixels. Thus we have focused attention on lay-
out algorithms whose basic data item is the component.

Components are represented exactly (neither filtered nor
approximated) as line-adjacency graphs [Pav82]. This data
structure supports, in time linear in the number of runs,
the extraction both of boundary lists and moments of area,
required for symbol recognition. Also in linear time, it
can be mapped to and from a x8-compressed form suitable
for external files (the CCITT Group 4 encoding [CC84]).

Using the set of approximate locations of components,
the dominant skew- and shear-distortion of the page as a
whole are measured and corrected if they differ from
strictly horizontal or vertical by more than 0.03 degrees.
Our skew-analysis algorithm [Bai87] is one of the fastest
and most accurate reported, and works without modifica-
tion on a wide variety of layouts, including multiple blocks,
sparse tables, variable line spacings, mixed fonts, and a
wide range of point sizes. Accuracy is unaffected by
touching characters, as long as they are in the minority; the
method is slightly sensitive to whether the symbol set has a
baseline or top-line convention. Later, as blocks of text
are isolated, they are skew- and shear-corrected again.

Next, blocks of text are isolated. For this, the
structure of the background (white space) is analyzed.
assisted by an enumeration of all maximal white rectangles
[BJF90]. This enumeration process required an asymptoti-
cally and absolutely fast algorithm: we developed one that,
aside from a sort, achieves an expected runtime linear in
the number of black connected components. In applying
this algorithm to page layouts, the crucial engineering deci-
sion is the specification of a partial order on white rectan-
gles to select shapes and sizes likely to occur in the back-
ground of a usable partition. This shape-directed order
determines a sequence of partial covers of the background,
and thus a sequence of nested page segmentations. In
experimental trials on Manhattan layouts of pages printed
in a variety of languages, good segmentations often occur
early in this sequence, using a simple and uniform shape-
directed rule. Unlike many reported bottom-up (iterative
merging) strategies, this does not depend on a large
number of symbol-set-dependent rules for good results. It
appears that publishers and printers in many languages,
constrained by similar printing technology and legibility
conventions [CMS82], use white space as a layout delimiter
in similar ways. The block-finding algorithm is not yet
completely implemented.

Next, each isolated block is segmented into lines of
text. Again, a global-to-local strategy is effective, even on
columns in which line spacing and text size vary over a
wide range. Columns are partitioned into lines by skew-
correction followed by analysis of the horizontal projection
profile. Several researchers report that it is possible to
estimate properties of text lines, such as text size and base-
line location, from their projection profiles, but we choose
to defer this until after symbol recognition, when a more
robust method becomes available.

4. Symbol Recognition
Technical challenges in printed symbol recognition arise,
generally speaking, from three types of variation:

(a) symbols: the set of idealized, rigid, elementary
shapes;

(b) deformatio~~s: permissible analytic shape variations
that each symbol may undergo, including scaling (text
size) and translation (height above baseline); and

(c) imaging defects: imperfections in the image due to
printing, optics, scanning, spatial quantization, binari-
zation, etc.

We have organized the recognition subsystem so that each
of these may be managed independently of the others.
Classifiers can be built for any collection of rigid symbols
under any specified defect distribution: this normally

occurs off-line during highly-automated training; the result-
ing classifier tables can be archived and later simply
selected at runtime. The range of permissible text sizes,
and the sensitivitv of recognition to discrepancies in size
and height above baseline, can be specified at runtime.

We have chosen to explore a recognition technology
that is a hybrid of structural shape analysis and Bayesian
statistical classification [Bai88a]. This attempts to combine
strong generalization across fonts with immunity to imag-
ing defects, so that it would be possible to build integrated
multiple-font classifiers without storing a large number of
prototype symbol descriptions [BL87]. In experiments on
39 font styles of isolated images of the Roman (printable
ASCII) symbol set, over the range of sizes from 8 to 14
point. at a digitizing resolution of 300 pixelstinch, we
measured success rates of 99.19% top choice and 99.87%
within the top 5 choices, after forgiving the arguably-
inevitable confusions among 1 I1 I! [I J , 0 0 , - ^ , and ".
The generalization factor achieved was over 15: that is,
more than 15 distinct font styles are represented by a sin-
gle prototype description within the classifier table, aver-
aged over all symbols.

Many published decision-theoretic recognition
methods require, as a manual first step, the exhaustive
specification of a feature set; later, during the training
phase, the set may be pruned or transformed automatically
for improved results. An interesting aspect of our method
is that the feature set is not specified in advance: instead,
only a handful of primitive shape types - edges, holes,
convex and concave boundary arcs, erc - are provided, in
the form of algorithms to extract them from boundary lists
and moments of area. The set of extracted primitives is
then converted into a feature vector, suitable for statistical
pattern recognition, by means of a mapping which is itself
constructed during automatic analysis of the occurrences
and distribution of primitives in the training set.

This approach has the virtue of consistency with our
overall policy of manually specifying as little as possible in
advance. We hoped that such a system would be able to
adapt to diverse symbol sets with little manual interven-
tion. The shape primitives were originally selected by
trial-and-error during experiments on the Roman alphabet
only. When we experimented on the very different
Tibetan U-chen writing system, we were encouraged by
high accuracy (9 5 8) on a large alphabet (438 distinct sym-
bols). This was achieved with no new shape primitives -
in fact, with no changes whatever in algorithms or tuning
parameters. Since then, we have built classifiers for Greek
and Japanese kana, with good results (>99% correct top
choice on single fonts under moderate distortion). In
another exercise, a classifier was built for 189 mathemati-
cal symbols (in Roman and Italic styles of a single font
family), and used successfully in research into reading of
typeset equations [Cho89].

We are also pursuing an alternative classification
technology based on neural nets [LBD90], which devotes
greater computational resources to the early stages of shape
extraction. Although this requires special hardware (e.g.
digital signal processors or custom VLSI convolvers), early
experiments [BGJ88] suggest that it will be significantly
more immune to image defects.

A quantitative model of imaging defects [Bai90]
which we have developed permits us to build accurate clas-
sifiers with a minimum of manual effort. The model
includes parameters for size, digitizing resolution, blur,
binarization threshold, pixel sensitivity variations, jitter,
skew, stretching, height above baseline, and kerning.
Associated with it is a pseudo-random defect generator that
reads one or more sample images of a symbol and writes
an arbitrarily large number of distorted versions with a
known distribution of defects. One use of the generator is

to allow classifiers to be built for new symbol sets or fonts
with minimal effort. For example, a classifier for two
fonts of Tibetan, with over 400 distinct symbols each, was
built from scratch with less than two weeks work by one
person, by selecting from the document images one sample
image for each symbol. The most tedious task was the
unavoidable one of labeling each image with its language-
specific symbol code. When a prelabeled machine-legible
font description is available, training a classifier can be
accomplished in less than a day.

The input to the shape classifier is an image of an iso-
lated character, without size or baseline context; the output
is a list of interpretations, in decreasing order of matching
confidence scores. These scores are logarithms of a pos-
teriori probabilities of class membership computed by a
Bayesian classifier. Their ordering is good, but their
class-conditional variance is large and so their absolute
magnitude does not reliably indicate whether or not a sym-
bol is malformed (due to touching symbols, for example).
We have found ways to normalize the scores by reference
to ancillary shape metrics such as Hamming distance (to
representative binary vectors) and Mahalanobis distance (to
mean vectors of scalar properties). Normalized confidence
scores, combining good ordering and low variance, are
used to drive later stages.

The first use of confidence scores is the inference of
text size and baseline of individual lines of text. Each
alternative symbol interpretation implies a text size
(estimated from per-class statistics collected during train-
ing): the median of these sizes, weighted by confidence, is
selected as the line's dominant text size. This size is then
used to prune the interpretations: it is as though a distinct
classifier, sensitive to both shape and size, had been used,
but the incremental cost is negligible. Baseline is selected
by a similar method, which works equally well for writing
systems with a top-line convention, such as Tibetan. The
policy of avoids the use of a separate system of symbol-
set-dependent rules.

The resegmentation of touching, fragmented, and
spurious (dirt) symbols is triggered by the presence of
low-confidence symbols. Within each affected word, we
execute a branch-and-bound search [KPB87] of alternative
splittings and merges of symbols, pruned by word-
confidence scores derived from symbol confidence. Only
for exceptional cases that remain ambiguous by shape, such
as the pair rn and rn, are language-specific rules needed to
guide resegmentation. The result of this processing is that
some words have alternative resegmentations in addition to
the alternative interpretations of their constituent symbols.
This double-level lattice of alternatives, ordered by shape
confidence scores, is passed to the linguistic contextual
analysis stage.

5. Linguistic & Semantic Context
Linguistic context, such as provided by dictionaries, punc-
tuation rules, and other lexical constraints, is often effec-
tive in resolving residual ambiguities of shape caused by
badly-designed symbol sets, overlapping font variations,
and distortions due to imaging defects. We exploit these in
a data-directed manner by filtering the lattice of word
interpretations.

We have experimented principally with veto filters,
which merely accept or reject a word interpretation. These
include all-alphabetic or all-numeric rules (quite effective
on Roman languages), punctuation prefixlsuffix patterns,
dictionary and word-list lookup, and regular expression
patterns. Some common filters are built in, but we also
permit the user to provide arbitrary programs, executed as
UNlX processes and attached to the OCR program by
pipes. Using such a device, we were able to adapt the sys-
tem in a few hours to exploit a Swedish-language word-

list-checking program.

The contextual-analysis control algorithm works a s
follows: alternative word interpretations are generated
(from the lattice that is output by symbol recognition), in
descending order of shape confidence scores. The list is
run through each filter in turn: if a filter accepts no
interpretation, the list is not modified (in case the filter is
not relevant); but if any interpretation is accepted, then all
rejected interpretations a re pruned. The user may control
how far down in confidence order the filters may look.

These methods are all data-directed: they merely
select among alternatives suggested by earlier shape
analysis. In some applications, model-directed analysis may
be required for good results: these are able to generate
alternatives from incomplete context based on linguistic o r
semantic models. In an experiment of this kind, on several
volumes of a chess encyclopedia [BK90], dramatically
improved results were obtained.

6. Transliteration
Within the page reader system, symbols are identified by
grapheme names - short alphanumeric strings - making
u p a name space potentially large enough to accommodate
symbols from many languages without conflict. Thus it is
possible to combine the symbol sets of multiple languages
in a single reader: we have already accomplished this for
the Roman and Greek alphabets.

When adapting the system to a new language, it is
necessary to provide translations to and from external sym-
bol codes (or transliterations) and OCR grapheme names.
In particular, such mappings a re required to translate the
labels of images in training sets, encode word interpreta-
tions for linguistic contextual analysis, and, finally, prepare
the output for external files, printing, or graphical display.
In the English-speaking world, the ASCII code is often
adequate for all these purposes; but for other languages,
different encoding and transliteration standards may be
needed at various stages of processing [Cle88]. In our sys-
tem, these choices are encoded in user-specified tables.

7. Tools a n d Data Structures

The family of programs making up the page reader system
are all written in the C programming language and run
under the UNIXa operating system on a variety of
machines. The "on-line" subsystem consists of the stages
of computation discussed above. The "off-line" subsystem
includes tools for training and testing classifiers, for the
pseudo-random generation of training sets, and for graphi-
cal display and editing of document images and intermedi-
ate results of processing.

All components of the on-line and off-line subsystems
a re unified by a common data structure that is persistent
and machine-independent. This data-structure permits the
description of a document image a s a full hierarchy of
pages of blocks of text lines of words of symbols, a s well
a s many incomplete hierarchies suited to early stages of
analysis.

8. Summary
W e have described the architecture of a page reader versa-
tile enough to be readily adapted to multi-font English
text, and single-font Greek. Tibetan, Swedish, chess nota-
tion, and typeset mathematics. Plans for future work
include experiments on other writing systems, possibly
including Kanji, Cyrillic, and Hangul. We are particularly
interested in testing the range of applicability of the con-
textual analysis control strategy, and in exploring model-
driven methods further.

computational linguistics. This research may someday lead
to reading machines that are simultaneously competent in
multiple languages.

9. Acknowledgements
This page reader is lineal descendant of one [KPB87] built
by Theo Pavlidis, Simon Kahan, and the present author. I
a m grateful for stimulating discussions with Larry Jackel,
George Nagy, Sargur Srihari, Theo Pavlidis, Larry Spitz,
and Kazuhiko Yamamoto.

10. References

Baird. H. S., "The Skew Angle of Printed Docu-
ments," Proceedings, 1987 Conference of the Society of
Photographic Scientists ond Engineers, Rochester, New
York, May 20-21, 1987.
Baird, H. S.. "Feature Identification fpr Hybrid
Structural/Statistical Pattern Classification, Computer
Visiort, Grophics, & Image Processing 4 2 , 1988, pp.
318-333.
Baird, H. S., "Global-to-Local Layout Analysis,"
Proceedings. IAPR Workshop on Syntactic and Struc-
turd Pottern Recognition, Pont-3-Mousson, France.
12-14 September. 1988.
Baird, H. S., "Document lmage Defect Models,"
Proceedings, IAPR 1990 Workshop on SSPR, Murray
Hill, NJ, June 13-15, 1990.
Baird, H. S., H. P. Graf, L. D. Jackel, and W. E.
Hubbard, "A VLSl Architecture for Binary lmage
Classification," Proceedings, COST13 Workshop on
Pixels to Features, Bonas, France, 22-27 August, 1988.
Baird, H. S., S. E. Jones, and S. J. Fortune. "lmage
Segmentation using Shape-Directed Covers," Proceed-
ings, IAPR 10th Int'l Conf. on Pottern Recognition.
Atlantic City, NJ, 17-21 June, 1990.
Baird, H. S., and K. Thompson, "Reading Chess,"
IEEE Trons. PAMI, Vol. PAMI-12, No. 6, June 1990,
pp. 552-559.
Baird, H. S., and S. Lam, "Performance Testing of
Mixed-Font, Variable-Size Character Recognizers,"
Proceedings, 5th Scnndirlnvian Conference on Image
Analysis, Stockholm, SWEDEN, June 2-5, 1987.
CClTT Recommendations T.4 and T.6, on facsimile
coding schemes and coding control functions for
Group 3 and Group 4 facsimile apparatus (drafted at
Malaga-Torremolinos, 1984).

[Cho89] Chou, P., "Recognition of Equations,,using a Two-
Dimensional Context-Free Grammar, Proc., SPIE
Visual Comm. ond lmoge Proc. IV, November 1989.

[CIe88] Clews, J., Lnngriage Automotion Worldwide: the
Development of Chorocter Set Stondords, R&D Report
No. 5962, The British Library. 1988.

[CMS82] The Chicogo Monuol of Style, The University of Chi-
cago Press. Chicago, Michigan, 1982.

[KPB87] Kahan, S., T. Pavlidis, and H. S. Baird, "On the
Recognition of Printed Characters of any Font or
Size," IEEE Trons. PAMI, Vol. PAMI-9, No. 2,
March, 1987.

[LBD90] LeCun, Y., B. Boser, J. S. Denker, D. Henderson. R .
E. Howard, W. Hubbard. L. D. Jackel, and H. S.
Baird, "Constrained Neural Network for Uncon-
strained Handwritten Digit Recognition." Proceedings,
Intl'l Workshop on Frontiers in Handwriting Recogni-
tion, Montreal. 2-3 April, 1990.

[Pav82] T. Pavlidis. Algorithms for Grophics ond Imoge Pro-
cessing, Computer Science Press. Rockville, Maryland.
1982.

W e feel there is still much to be learned about good
engineering strategies for combining image analysis with

