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Abstract 
An experimental machine vision system that reads pages of 
printed text is described, with particular attention to features 
which permit it to cope with a variety of languages. We have 
attempted to uncouple sources of variation in the input - irnag- 
ing defects, page layouts, sizes of text, symbol sets, font styles, 
linguistic contexts, and transliteration encodings - so that each 
can be managed by an independent subsystem. In pursuit of this 
goal, new algorithms have been required. For example. page 
layout analysis is virtually language-independent due to the use 
of a global-to-local strategy; but this demanded unusually fast 
and accurate algorithms for skew- and shear-correction and for 
analysis of the structure of white space. To permit arbitrary 
combinations of symbol sets, font styles, and image defect distri- 
butions for specialized classifiers, we developed a hybrid 
structuraVstatistica1 recognition technology, trained by examples 
generated by a pseudo-random image defect model. Character 
segmentation is driven by classifier confidence scores, with the 
result that language-specific rules are rarely needed. Linguistic 
context, such as provided by dictionaries, is exploited by a series 
of data-directed filtering algorithms in a uniform and modular 
manner. 

1. Introduction 

This is an overview of an experimental printed-page reader 
that has been applied to multiple-font English text and 
fixed-font Swedish, Tibetan, chess notation, and mathemat- 
ical equations. The demands of versatility - the ability to 
adapt the system to diverse writing systems with a 
minimum of manual effort - have strongly influenced the 
system's architecture. An overview of an early version of 
the reader appeared as [KPB87]; recent details of algo- 
rithmic comoonents are oublished elsewhere (references are 
cited belowj. 

Automatic page readers must cope with many kinds 
of variability in their input, including imaging defects, lay- 
out geometries, sizes of text, symbol sets, font styles, 
linguistic contexts, and transliteration codes. An overall 
engineering objective has been to decouple these from one 
another, so that each can be attacked independently. To  
achieve this, new algorithms have been required at several 
stages. For example, thanks to a global-to-local strategy, 
page layout analysis is virtually language-independent - 
but this strategy demands fast and accurate algorithms for 
skew- and shear-correction and the analysis of white space. 

Our approach to symbol (character) recognition is a 
hybrid of structural shape analysis and Bayesian statistical 
classification, and is trainable by example, usually off-line. 
Shape features are constructed (not merely selected) during 
an automatic analysis of the training set; as a result, accu- 
rate classifiers may be rapidly built for diverse symbol sets. 
A pseudo-random image defect generator permits the 
automatic construction of classifiers given as few as one 
sample image per symbol, which may be either an ideal 
prototype from a machine-legible font description or an 
example lifted from a document image. Thus the manual 

effort to learn a new symbol set or font style is reduced to 
a minimum. The classifiers exhibit strong generalization 
across font style differences, text sizes, and commonly- 
occurring image defects. 

The algorithms for layout analysis and symbol recog- 
nition are applicable to any writing system in which the 
symbols are rigid and disconnected (spaced apart from one 
another), most of the time. Where characters do touch, 
segmentation is controlled by classifier confidence scores, 
so that language-specific rules are needed only for cases 
that are ambiguous by shape. Other linguistic context, 
such as provided by dictionaries, punctuation rules, and 
other lexical constraints, is exploited in a uniform data- 
directed manner. 

Table-driven algorithms have been used wherever 
possible. As a result, the programs for recognition of sym- 
bols and inference of text size and baseline possess no 
language-dependent special cases. Linguistic context may 
be specified by arbitrary word-lists and general-purpose 
regular-expression patterns. Final transliteration into an 
output encoding (such as ASCII) is via user-specified 
tables. 

Section 2 defines the class of problems for which the 
page reader is designed, and gives an overview of the sys- 
tem. Page layout analysis is discussed in Section 3, and 
symbol recognition in Section 4. The exploitation of 
linguistic context is described in Section 5, and the transli- 
teration to coded and formatted output in Section 6. The 
tools and data structures used are described in Section 7 .  

2. Definition 

The page reader accepts bilevel images (black characters on 
a white background) of pages of machine-printed or 
typewritten text. For the purposes of this paper, we will 
assume that only a single language is present, and it is 
specified in advance. The specification of a language 
determines the symbol set, reading order, linguistic con- 
straints, and transliteration rules. However, font styles, 
text sizes, and page layouts will not be specified in 
advance, at least in the most demanding applications. Of 
course it is also useful to be able to construct custom 
readers for higher accuracy on known symbols, fonts, and 
defects. 

The sequence of computation stages is as follows: 
1 .  geometric layout analysis: connected components 

analysis, skew- and shear-correction, segmentation 
into text blocks, line-finding within blocks, character- 
finding within lines, and determination of reading 
order; 

2. symbol recognition: classification of characters by 
shape, inference of text size and baseline (or top-line), 
segmentation of lines into words by spacing, and 



shape-directed resegmentation of characters within 
words to handle touching and broken characters; 

3.  linguistic contextual analysis: segmentation of lines 
into words by lexical means, exploitation of dic- 
tionaries and punctuation rules, and enforcement of 
inter-word consistency constraints; 

4, logical layout analysis: partitioning blocks into sec- 
tions, labeling sections by function, and reassembling 
sections (across blocks) into reading order; and 

5, transliteration: mapping the internal representation of 
the analysis into an output character encoding (e.g. 
ASCII or JIS), possibly annotated by format (e.g. troff 
or SGML). 

By design, each of these five stages operates as auto- 
nomously as possible. Up to the present time, we have 
been able to avoid feedback control paths among them. If 
and when feedback control proves necessary, there will be 
few software-engineering obstacles, since all stages use a 
single, common data-structure. 

We assume that within each page there is a single 
alignment coordinate system, defined by the horizontal 
skew and vertical shear angles; within it, all symbols are 
expected to be upright (landscape layouts must be manually 
specified, so that the image can be rotated before layout 
analysis). Layouts must be Mar~hattan after alignment 
correction: that is, they can be partitioned into isolated, 
convex blocks (columns) of text by horizontal and vertical 
line segments cutting through white space; this is a large 
and useful class of layouts. The system knows in advance, 
from the language specification, whether text lines within 
blocks are horizontal or vertical, and, if horizontal, 
whether reading order is left-to-right or right-to-left. 
Within blocks, text sizes and line spacings may vary, but 
each line is expected to have a single text size and baseline 
(or top-line) location. 

Writing systems are expected to be non-cursive and 
disconnected: that is, their symbols are rigid and spaced 
apart, at least nominally. In practice, symbols may 
occasionally touch or overlap, giving rise to character- 
segmentation problems which the system attempts to solve. 
Writing systems meeting these criteria include Roman, 
Greek, Cyrillic, Chinese, Kanji, Hangul, Hebrew, their 
derivatives, and many others. Writing systems normally 
not of this kind include Arabic, Devanagari, and their 
derivatives. 

At present, logical layout analysis identifies para- 
graphs and suppresses garbled text; it will not be discussed 
further. Algorithms to cope with graphics, line-drawings, 
and photographs also will not be discussed. 

3. Geometric Layout Analysis 
The analysis of layout geometry follows a global-to-local 
strategy [Bai88b], that is, greedy and guided by global evi- 
dence. A non-backtracking sequence of model-refinement 
steps is executed in an order constrained by dependencies 
among model parameters and maximizing the statistical 
support available at each step for inference of the parame- 
ters. Experiments suggest that this is more robust than 
bottom-up merging methods and more efficient than back- 
tracking top-down methods, while requiring relatively little 
a prior; information. In particular, the method requires no 
prior knowledge of the symbol set, and only rough esti- 
mates of the range of text sizes. 

First, black 8-connected components are extracted. 
On a typical page, approximately one in five pixels is 
black, each run contains more than 10 black pixels, and 
each component over 25 runs: so that, the number of com- 
ponents is three orders of magnitude smaller than the 
number of pixels. Thus we have focused attention on lay- 
out algorithms whose basic data item is the component. 

Components are represented exactly (neither filtered nor 
approximated) as line-adjacency graphs [Pav82]. This data 
structure supports, in time linear in the number of runs, 
the extraction both of boundary lists and moments of area, 
required for symbol recognition. Also in linear time, it 
can be mapped to and from a x8-compressed form suitable 
for external files (the CCITT Group 4 encoding [CC84]). 

Using the set of approximate locations of components, 
the dominant skew- and shear-distortion of the page as a 
whole are measured and corrected if they differ from 
strictly horizontal or vertical by more than 0.03 degrees. 
Our skew-analysis algorithm [Bai87] is one of the fastest 
and most accurate reported, and works without modifica- 
tion on a wide variety of layouts, including multiple blocks, 
sparse tables, variable line spacings, mixed fonts, and a 
wide range of point sizes. Accuracy is unaffected by 
touching characters, as long as they are in the minority; the 
method is slightly sensitive to whether the symbol set has a 
baseline or top-line convention. Later, as blocks of text 
are isolated, they are skew- and shear-corrected again. 

Next, blocks of text are isolated. For this, the 
structure of the background (white space) is analyzed. 
assisted by an enumeration of all maximal white rectangles 
[BJF90]. This enumeration process required an asymptoti- 
cally and absolutely fast algorithm: we developed one that, 
aside from a sort, achieves an expected runtime linear in 
the number of black connected components. In applying 
this algorithm to page layouts, the crucial engineering deci- 
sion is the specification of a partial order on white rectan- 
gles to select shapes and sizes likely to occur in the back- 
ground of a usable partition. This shape-directed order 
determines a sequence of partial covers of the background, 
and thus a sequence of nested page segmentations. In 
experimental trials on Manhattan layouts of pages printed 
in a variety of languages, good segmentations often occur 
early in this sequence, using a simple and uniform shape- 
directed rule. Unlike many reported bottom-up (iterative 
merging) strategies, this does not depend on a large 
number of symbol-set-dependent rules for good results. It 
appears that publishers and printers in many languages, 
constrained by similar printing technology and legibility 
conventions [CMS82], use white space as a layout delimiter 
in similar ways. The block-finding algorithm is not yet 
completely implemented. 

Next, each isolated block is segmented into lines of 
text. Again, a global-to-local strategy is effective, even on 
columns in which line spacing and text size vary over a 
wide range. Columns are partitioned into lines by skew- 
correction followed by analysis of the horizontal projection 
profile. Several researchers report that it is possible to 
estimate properties of text lines, such as text size and base- 
line location, from their projection profiles, but we choose 
to defer this until after symbol recognition, when a more 
robust method becomes available. 

4. Symbol Recognition 
Technical challenges in printed symbol recognition arise, 
generally speaking, from three types of variation: 

(a) symbols: the set of idealized, rigid, elementary 
shapes; 

(b) deformatio~~s: permissible analytic shape variations 
that each symbol may undergo, including scaling (text 
size) and translation (height above baseline); and 

(c) imaging defects: imperfections in the image due to 
printing, optics, scanning, spatial quantization, binari- 
zation, etc. 

We have organized the recognition subsystem so that each 
of these may be managed independently of the others. 
Classifiers can be built for any collection of rigid symbols 
under any specified defect distribution: this normally 



occurs off-line during highly-automated training; the result- 
ing classifier tables can be archived and later simply 
selected at runtime. The range of permissible text sizes, 
and the sensitivitv of recognition to discrepancies in size 
and height above baseline, can be specified at runtime. 

We have chosen to explore a recognition technology 
that is a hybrid of structural shape analysis and Bayesian 
statistical classification [Bai88a]. This attempts to combine 
strong generalization across fonts with immunity to imag- 
ing defects, so that it would be possible to build integrated 
multiple-font classifiers without storing a large number of 
prototype symbol descriptions [BL87]. In experiments on 
39 font styles of isolated images of the Roman (printable 
ASCII) symbol set, over the range of sizes from 8 to 14 
point. at a digitizing resolution of 300 pixelstinch, we 
measured success rates of 99.19% top choice and 99.87% 
within the top 5 choices, after forgiving the arguably- 
inevitable confusions among 1 I1 I! [ I J ,  0 0 ,  - ^ ,  and ". 
The generalization factor achieved was over 15: that is, 
more than 15 distinct font styles are represented by a sin- 
gle prototype description within the classifier table, aver- 
aged over all symbols. 

Many published decision-theoretic recognition 
methods require, as a manual first step, the exhaustive 
specification of a feature set; later, during the training 
phase, the set may be pruned or transformed automatically 
for improved results. An interesting aspect of our method 
is that the feature set is not specified in advance: instead, 
only a handful of primitive shape types - edges, holes, 
convex and concave boundary arcs, erc - are provided, in 
the form of algorithms to extract them from boundary lists 
and moments of area. The set of extracted primitives is 
then converted into a feature vector, suitable for statistical 
pattern recognition, by means of a mapping which is itself 
constructed during automatic analysis of the occurrences 
and distribution of primitives in the training set. 

This approach has the virtue of consistency with our 
overall policy of manually specifying as little as possible in 
advance. We hoped that such a system would be able to 
adapt to diverse symbol sets with little manual interven- 
tion. The shape primitives were originally selected by 
trial-and-error during experiments on the Roman alphabet 
only. When we experimented on the very different 
Tibetan U-chen writing system, we were encouraged by 
high accuracy ( 9 5 8 )  on a large alphabet (438 distinct sym- 
bols). This was achieved with no new shape primitives - 
in fact, with no changes whatever in algorithms or tuning 
parameters. Since then, we have built classifiers for Greek 
and Japanese kana, with good results (>99% correct top 
choice on single fonts under moderate distortion). In 
another exercise, a classifier was built for 189 mathemati- 
cal symbols (in Roman and Italic styles of a single font 
family), and used successfully in research into reading of 
typeset equations [Cho89]. 

We are also pursuing an alternative classification 
technology based on neural nets [LBD90], which devotes 
greater computational resources to the early stages of shape 
extraction. Although this requires special hardware (e.g. 
digital signal processors or custom VLSI convolvers), early 
experiments [BGJ88] suggest that it will be significantly 
more immune to image defects. 

A quantitative model of imaging defects [Bai90] 
which we have developed permits us to build accurate clas- 
sifiers with a minimum of manual effort. The model 
includes parameters for size, digitizing resolution, blur, 
binarization threshold, pixel sensitivity variations, jitter, 
skew, stretching, height above baseline, and kerning. 
Associated with it is a pseudo-random defect generator that 
reads one or more sample images of a symbol and writes 
an arbitrarily large number of distorted versions with a 
known distribution of defects. One use of the generator is 

to allow classifiers to be built for new symbol sets or fonts 
with minimal effort. For example, a classifier for two 
fonts of Tibetan, with over 400 distinct symbols each, was 
built from scratch with less than two weeks work by one 
person, by selecting from the document images one sample 
image for each symbol. The most tedious task was the 
unavoidable one of labeling each image with its language- 
specific symbol code. When a prelabeled machine-legible 
font description is available, training a classifier can be 
accomplished in less than a day. 

The input to the shape classifier is an image of an iso- 
lated character, without size or baseline context; the output 
is a list of interpretations, in decreasing order of matching 
confidence scores. These scores are logarithms of a pos- 
teriori probabilities of class membership computed by a 
Bayesian classifier. Their ordering is good, but their 
class-conditional variance is large and so their absolute 
magnitude does not reliably indicate whether or not a sym- 
bol is malformed (due to touching symbols, for example). 
We have found ways to normalize the scores by reference 
to ancillary shape metrics such as Hamming distance (to 
representative binary vectors) and Mahalanobis distance (to 
mean vectors of scalar properties). Normalized confidence 
scores, combining good ordering and low variance, are 
used to drive later stages. 

The first use of confidence scores is the inference of 
text size and baseline of individual lines of text. Each 
alternative symbol interpretation implies a text size 
(estimated from per-class statistics collected during train- 
ing): the median of these sizes, weighted by confidence, is 
selected as the line's dominant text size. This size is then 
used to prune the interpretations: it is as though a distinct 
classifier, sensitive to both shape and size, had been used, 
but the incremental cost is negligible. Baseline is selected 
by a similar method, which works equally well for writing 
systems with a top-line convention, such as Tibetan. The 
policy of avoids the use of a separate system of symbol- 
set-dependent rules. 

The resegmentation of touching, fragmented, and 
spurious (dirt) symbols is triggered by the presence of 
low-confidence symbols. Within each affected word, we 
execute a branch-and-bound search [KPB87] of alternative 
splittings and merges of symbols, pruned by word- 
confidence scores derived from symbol confidence. Only 
for exceptional cases that remain ambiguous by shape, such 
as the pair rn and rn, are language-specific rules needed to 
guide resegmentation. The result of this processing is that 
some words have alternative resegmentations in addition to 
the alternative interpretations of their constituent symbols. 
This double-level lattice of alternatives, ordered by shape 
confidence scores, is passed to the linguistic contextual 
analysis stage. 

5. Linguistic & Semantic Context 
Linguistic context, such as provided by dictionaries, punc- 
tuation rules, and other lexical constraints, is often effec- 
tive in resolving residual ambiguities of shape caused by 
badly-designed symbol sets, overlapping font variations, 
and distortions due to imaging defects. We exploit these in 
a data-directed manner by filtering the lattice of word 
interpretations. 

We have experimented principally with veto filters, 
which merely accept or reject a word interpretation. These 
include all-alphabetic or all-numeric rules (quite effective 
on Roman languages), punctuation prefixlsuffix patterns, 
dictionary and word-list lookup, and regular expression 
patterns. Some common filters are built in, but we also 
permit the user to provide arbitrary programs, executed as 
UNlX processes and attached to the OCR program by 
pipes. Using such a device, we were able to adapt the sys- 
tem in a few hours to exploit a Swedish-language word- 



list-checking program. 

The contextual-analysis control algorithm works a s  
follows: alternative word interpretations are generated 
(from the lattice that is output by symbol recognition), in 
descending order of shape confidence scores. The list is 
run through each filter in turn: if a filter accepts no 
interpretation, the list is not modified (in case the filter is 
not relevant); but if any interpretation is accepted, then all 
rejected interpretations a re  pruned. The user may control 
how far down in confidence order the filters may look. 

These methods are all data-directed: they merely 
select among alternatives suggested by earlier shape 
analysis. In some applications, model-directed analysis may 
be required for good results: these are able to  generate 
alternatives from incomplete context based on linguistic o r  
semantic models. In an experiment of this kind, on several 
volumes of a chess encyclopedia [BK90], dramatically 
improved results were obtained. 

6. Transliteration 
Within the page reader system, symbols are identified by 
grapheme names - short alphanumeric strings - making 
u p  a name space potentially large enough to accommodate 
symbols from many languages without conflict. Thus it is 
possible to combine the symbol sets of multiple languages 
in a single reader: we have already accomplished this for 
the Roman and Greek alphabets. 

When adapting the system to a new language, it is 
necessary to  provide translations to  and from external sym- 
bol codes (or  transliterations) and OCR grapheme names. 
In particular, such mappings a re  required to translate the 
labels of images in training sets, encode word interpreta- 
tions for linguistic contextual analysis, and, finally, prepare 
the output for external files, printing, or graphical display. 
In the English-speaking world, the ASCII code is often 
adequate for all these purposes; but for other languages, 
different encoding and transliteration standards may be 
needed at various stages of processing [Cle88]. In our sys- 
tem, these choices are encoded in user-specified tables. 

7. Tools a n d  Data Structures 

The  family of programs making up the page reader system 
are  all written in the C programming language and run 
under the UNIXa operating system on a variety of 
machines. The  "on-line" subsystem consists of the stages 
of computation discussed above. The "off-line" subsystem 
includes tools for training and testing classifiers, for the 
pseudo-random generation of training sets, and for graphi- 
cal display and editing of document images and intermedi- 
ate results of processing. 

All components of the on-line and off-line subsystems 
a re  unified by a common data structure that is persistent 
and machine-independent. This data-structure permits the 
description of  a document image a s  a full hierarchy of 
pages of blocks of text lines of words of symbols, a s  well 
a s  many incomplete hierarchies suited to early stages of 
analysis. 

8. Summary  
W e  have described the architecture of a page reader versa- 
tile enough to be readily adapted to multi-font English 
text, and single-font Greek. Tibetan, Swedish, chess nota- 
tion, and typeset mathematics. Plans for future work 
include experiments on other writing systems, possibly 
including Kanji, Cyrillic, and Hangul. We are  particularly 
interested in testing the range of applicability of the con- 
textual analysis control strategy, and in exploring model- 
driven methods further. 

computational linguistics. This research may someday lead 
to  reading machines that are simultaneously competent in 
multiple languages. 
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