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Abstract 

Obtaining digital images from binary scenes (for example text 
on paper) and subsequent thresholding does not necessarily lead 
to high quality binary images. In the imaging process. the binary 
scene is low-pass filtered and tiny details are therefore smeared. 
This low-pass filtering is necessary for the subsequent sampling 
to get a discrete image. In this paper, we bomw from the t h o  
ry of data transmission, where a similar smearing process 
occurs: inter symbol interference (ISI) [Qu85]. We have tried to 
use the theory of decision feedback equalisation @FE) in order 
to improve the quality of detail of binary images from binary 
scenes. It will be shown that DFE can be used to obtain a binary 
image with the same quality of a surface which is 2 to 3 times 
as large as when straightforward thresholding is used. The 
method will be compared with dynamic thresholding [Be861 and 
iterative constrained deblurring [BL90]. Another application of 
DFE in images is in image enhancement 

Introduction 

Thresholding of an image obtained with some imaging system 
from a binary scene (e.g. text on paper), does not necessarily 
result in a binary image which is a faithful representation of 
that binary scene. First of all, this is due to the sampling densi- 
ty, but there is another reason as well. The compulsory anti- 
aliasing low-pass filter causes some blur. In a grey-level image 
from a binary scene like printed text, where the pixel size is 
just a little bit smaller than the holes in characters, these holes 
(in for example the characters "e" and "a") might look white, 
but they may be just a liule less black than the ink around these 
holes. This is due to the low-pass filtering. With a threshold at 
the 50% level, these holes may be thresholded to black. 

One solution would be to increase the sampling density and to 
incrcase the cut-off frequency of the low-pass filter according- 
ly, but thcn we need larger cameras, more scans, etc. Besides, it 
does not seem to be necessary, because in the grey-level image, 
small details such as holes in characters are still visible. 

Another solution comes from the field of data-transmission. In 
this field, data are transmitted over a channel e g. using binary 
pulses. Usually, one wants to have the highest possible data- 
rate over a given channel. The channel tends to spread these puls- 
es, so that they will overlap at high data-rates: Inter Symbol 
Interference (ISI) [Qu85]. It can be overcome using decision feed- 
back equalisation (DFE). The principle involved is that the 
receiver takes a (good!) guess at what a transmitted pulse might 
have been. Using the outcome of this guess, the receiver com- 
putes what the IS1 will be due to this pulse and then subtracts 
this estimated IS1 from the received signal. so that the IS1 is 
effectively rcmovcd. Succeeding pulses can then be detected in a 
signal that does not contain IS1 from previous pulses anymore. 
It secms that it is possible now to transmit a signal with a 
large bandwidth over a channel with a small bandwidth. Howev- 
er. what happens is that bandwidrh is traded for dynamic range. 

This is only possible if the signal to noise ratio (SNR) is high 
enough. 

The blurring of images from binary scenes can be modeled as 2-d 
IS1 and DFE can be generalised to remove it. The most difficult 
problem is that in a binary scene, the data (e.g. ink on paper) can 
start and stop at any position (e.g. halfway a pixel), because it 
is a confinuow scene. The DFE theory is derived for a system 
where the original signal is discrele and one knows the data rate 
as well as the sampling phase [Qu85] and [MS81]. A simple 
adaptation gives already quite good results as will be explained 
in Section 2. We will show that DFE is in effect an adaptive 
thresholding method similar to dynamic thresholding [Be86]. 
The difference between the two is that the former uses more 
knowledge over the image formation process and assumes that 
the original unblurred image is binary. The latter technique tries 
to make a binary image of a grey-level one without using any 
assumptions about the input image. We will show that the use 
of this extra knowledge by DFE yields a better result 

In Section 1 we treat 1-d DFE. In Section 2, we extend DFE to 
the 2-d case. In Section 3, we discuss some experiments where 
we use a discrere original unblurred image and compare DFE to 
iterative constrained deblurring [BL90]. Also in Section 3, we 
deblur images takcn in with a camera from a binary scene and 
compare DFE with dynamic thresholding [Be861 for this situa- 
tion. Finally, in Section 4. we draw some conclusions. 

1 DFE: the 1-d case 

Decision feedback equalisation (DFE) in itself or DFE using an 
extra rcceiver filter can be used to equalise channels which 
exhibit inter-symbol interference (ISI). Without equalisation, 
the detection of transmitted symbols can be difficult or even 
impossible for such channels. For an overview article on equali- 
sation methods. refer to [Qu85J. DFE uses the already detected 
symbols to estimate the IS1 they cause in order to make the 
detection of future symbols easicr. In this scction, we will 
explain DFE and how filters for DFE can be designed. Most of 
the material covered in 1.2 originates from [Qu85] and [MS81]. 

1.1 DFE of causal channels 

Suppose a signal ai with signal levels +1 and -1 is transmitted 

over a channel with impulse response pi, fcx which the follow- 
ing applies: 

(1) pi = 0 ; icO (causal channel), 

= 1 ; i=O (amplitude scaling). 

This channel can be equalised using DFE as shown in Fig. 1 
(without the recciver filtcr which will be discussed in Section 
1.2). We will show that the equalisation can be done perfectly 
if the noise levcl is sufficiently low. 



In the sequel, 8 denotes convolution and (a8b)i denotes ele- 

ment i of the result of the convolution of a and b. The signals 
in the system in Fig. 1 are computed as follows. The received 
signal ri is the output of the channel corrupted by additive 

white Gaussian noise vi: 

The output signal hi is the output of the quantiser Q with the 

decision signal cii as input: 

From the output signal, the feedback filter estimates the IS1 
which would be caused by the transmission of di. using the 

impulse response ci. This estimated IS1 signal is subtracted 

from the received signal ri (no receiver filter in this case) to 

form the decision signal 8;: 

The feedback filter has access to past output elements only, so 
the coefficients ci have to be zero for icO. Assuming that the 

quantiser makes the right decisions, bi will be equal to ai for 

all i .  Taking this into account, di becomes: 

If we choose the feedback filter coefficients such that: 

(6) ci = 0 for i = 0 ; ci = pi for i + 0 , 

So whenever lvil c 1, di can be used to estimate ai correctly, 

whereby our assumption of the correctness of bi is met. Because 

we assumed that the channel is causal, it is possible to use the 
feedback filter coefficients according to Eq. (6). 

From this, one can get the impression that any data rate is possi- 
ble over narrow bandwidth channels. However, bandwidth is ex- 
changed with dynamic range. Disregarding the noise, the peak 
value of r is: 

where we also used Eq. (1). The peak value of the signal ai we 

are interested in is only 1. The peak value of the noise shoulh be 
less than 1 in order to estimate ai  correctly. Suppose we have a 
certain channel with a low-pass filter characteristic. If we low- 
er the cut-off frequency, while rescaling the coefficients of the 
new impulse response according to Eq. (1). then rpeak will 
increase. Therefore, we must have a better SNR at the output of 
the channel in order to be able to retrieve ai correctly when the 
cut-off frequency is lowered. 

1.2 DFE in combination with a FIR receiver filter 

In Section 1.1 we saw the importance of the relative magnitude 
of po of the channel impulse response with respect to the other 

samples. We can shift the channel impulse response backwards 
in time to have another non-zero sample as pg, possibly result- 

ing in a smaller rpeak in Eq. (8) and a lower required SNR. 

However, the resulting channel will be non-causal and cannot be 
equalised totally using only DFE. We introduce the receiver fil- 
ter (Fig. l)  as a more general method to shift the channel 
impulse response in time. This filter is designed such that at the 
detector, the noise and IS1 levels become similar in order to 
have the lowest error signal level possible. If the SNR at the 
receiver filter input is high enough, the receiver filter will be 
designed such that the noise level is increased, while decreasing 
the IS1 that cannot be equalised by the DFE. This is the result 

of a least squares optimisation of the "error" di - ai [Qu85]. 

Now, we have no restrictions on the channel p;. It can be non- 

causal. Note that much of the theory of the preceding section 
still applies, by considering the cascade of the channel and the 
receiver filter as the "total channel" which is to be equalised by 
DFE. The set W contains all the indices for which the receiver 
filter has a non-zero coefficient. The receiver filter can be non- 
causal. The feedback filter has to be causal of course, because 
future decisions cannot be used. So: 

(9) ci # 0 ; i E C (C is a set of positive indexes), 

= 0 ; elsewhere. 

Using again the assumption that the decisions made in the quan- 
tiser are correct (i.e, 4 = ai), we get for di : 

This system can be optimised by minimising the mean squared 
difference between ai and di, through adjusting wi and ci. The 

error e to be minimised is (assuming uncorrelated zero mean 

noise and data, with variances a: and a:. respectively): 

= 0: El i wi12 + 02 1 [(w 8 P ) ~  - ci - tii l 2  . 

Minimising e with respect to ck for all k E C is achieved by 

taking the partial derivatives of e with respect to ck and setting 

the results to zero. This yields: 

m 

(12) - ae = 0 2 . E  { ~ [ ( W B ~ ) ~ - C ~ - ~ ~ - J .  

ack 
i- 

. a  - [ ( w B ~ ) ~  - Ci - t i i ]  ) 
ack 

= - ~ o : [ ( w @ ~ ) ~ - c ~ - ~ ~ ]  , V k e  C . 

Setting (12) to zero yields: 

(13) ck = ( w @ p ) k ,  V k c C .  

This is no surprise, since now the feedback filter has to equalise 
the "total channel" formed by the cascade of channel and receiver 
filter, which indeed has the convolution of both impulse 
responses as its impulse response. 

Minimising e with respect to all the elements of the receiver 
filter wk. with k E W means again taking partial derivatives and 

setting the results to zero. Using (13) as well yields: 



2.1 The mathematics of 2-d DFE 

The right-most term leads to: 

Substituting this in Eq. (14) and setting (14) to zero yields: 

Eq. (16) is a system of k linear equations with k unknowns wk 

and can be solved numerically if the channel impulse response. 
the noise variance and the data variance are known. 

So far, we assumed that the output data cii are equal to the trans- 

mitted data a;. If an error occurs, the feedback filter will be 

filled with one wrong datum and hence, instead of estimating 
the right amount of IS1 to be subtracted from the "channel" out- 
put, it estimates something wrong which can make matters 
worse than when no equalisation was performed. For this rea- 
son, one single error can cause error propagation. This error 
propagation leads to an error rate which can be a factor of 10 to 
100 worse than the error rate which can be computed using the 
actual SNR and assuming the noise to be Gaussian [Qu85]. Since 
error rates decrease easily by a factor of 10 for every dB in SNR 
improvement for an S M  around 15 dB [BW9], using an SNR 
which is a few dB better than required for systems without 
error propagation compensates for this effect. 

2 DFE: the 2-d case 

When considering an image of a binary scene (e.g. printed text), 
we have the same effect as what happens in data transmission. 
The effect of the camera-blur can be compensated for using DFE 
and a receiver filter, if we use extra prior informalion about the 
camera characteristics, noise level and blacklwhite intensities of 
ink and paper. The black and white on the paper are the symbols 
that are to be transmitted over the 2-d channel which is formed 
by the camera and sampling devices. The sampled and digitised 
image is the output of the 2-d channel. We get a syslem like the 
one shown in Fig. 1, but all signals are 2 4  now. 

Note that the output signal of the feedback filter acts as a 
threshold. If we use a receiver filter, then not the "received" 
input image, but its enhanced version is thresholded with it. So 
DFE (with or without receiver filter) is in effect an algorithm 
which tries to ccmpute an optimal threshold for each pixel, just 
like dynamic thresholding [Be86]. Dynamic thresholding is a 
technique which tries to estimate a threshold for the middle pix- 
el in a window, using no prior knowledge and using only the 
information from the window. 

The following problems make it difficult to use the theory of 
the preceding section straighlforwardly: 

1 We are dealing with a hoo dimensional channel now. 
2 The ampliludes of the data are unknown. 
3 We are dealing with bounded images. 
4 The "data-rate" is unknown. 

These problems will be treated in the following sections. 

In Section 1.2 we discussed the mathematics of 1-d equalisation. 
Two linear filters are required, a non-causal receiver filter and a 
causal feedback filter. The receiver filter will not give any prob- 
lems, because in image processing, it is quite natural to use lin- 
ear non-causal filters. The set W contains all 2-d indices for 
which the receiver filter has a non-zero coefficient The causal 
feedback filter will give a problem, however, because there is no 
natural ordering of past and future in an image. We have to 
make a choice of which pixels we assume to be the past ones and 
which should be the future ones. The set C contains all the non- 
zero coefficients of the feedback filter. Because of the required 
causality, we have the following constraint: 

Based on this, the mathematics for the 2-d case are merely a repe- 
tition of the mathematics of Section 1.2 with appropriate adapta- 
tions for 2-d summations. Therefore, we will just state the end 
resulfs of the optimisation: 

Eq. (19) is a system of linear equations with the same number 
of unknowns wk,, and can be solved numerically if the channel 

impulse response, the noise variance and the signal variance are 
known. This seems rather cumbersome, but it only needs to be 
done once for a fixed camera and optical system. 

2.2 The amplitudes of the 2-d data 

In the original data transmission case. the amplitudes of the 
transmitted symbols are known. In our treatment of the I-d and 
2-d case, we assumed that the symbols are binary and that the 
data signal has no D.C. component. The last assumption was 
used during the computation of the expectancies of the signal 
energies. However, the binary scenes that we are looking at with 
our camera do not behave in this way. First of all, intensities 
are all positive. Secondly, both ink and paper can have any inten- 
sity. A solution to the sccond problem is that we use a calibrat- 
ed or corrected set-up, such that the intensity coming from the 
paper is more or less constant all over the image and known, as 
well as the intensity from the ink. This only has to be done once 
for a fixed set-up which has iu; own lighting system. If this is 
done, the average of the paper intensity and the ink intensity is 
subtracted from all of the input image in order to solve the 
f is t  problem. This works very good in practice. 

2.3 Image boundary treatment 

Images are finite in size and therefore the borders need careful 
treatment. We need previous output symbols in the DFE and 
these previous output symbols should be correct, because else 
the estimated IS1 is very wrong. The previous output symbols 
needed at boundaries are at the left, upper and right boundary of 
the image. There is a difference in the treatment of each of the 
three. 

At the right boundary, the output pixel dk., that lies on the 

right boundary is copied to pixels on the same line outside the 
image to the right, to be used as previously estimated pixels in 
the processing of the subsequent lines. 



For the upper boundary. there are no previous output pixels to 
copy. It is very difficult to get good estimates for the output 
pixels above the image. Here, we just take the upper line from 
the output of the channel and feed it through the quantiser with- 
out any processing. Its outpuu are used as previous output pix- 
els above the image, where bk,l = h-l,l fork < -1. 

For previous lines at the left boundary, the previous output pix- 
els from the left border column are copied. We still need the 
previous output pixels from the same line to the leff outside the 
image. Assuming that pixels outside images are copies from bor- 
der pixels, we can compute the required previous output pixels 
to the left outside the image, where H is the height of the image: 

for (OScH) A VcO) * 
00 00 00 

for (OlicH) A V<O) . 
From dij, the quantiser Q computes the required previous output 

pixels at the left border in the same line. 

2.4 The effect of the "unknown data rate" 

In data transmission, the data symbols are transmitted with a 
fixed rate. In Lhis paper, we are dealing with images of binary 
scenes. In these situations, there is no fixed data rate. The bound- 
aries of the ink can be anywhere. To obtain pixels, the system to 
process the camera images has a certain horizontal and vertical 
sampling rate. It is possible that ink boundaries cut through a 
pixel, so that each of the two decisions: "pixel is black" or 
"pixel is white" is wrong. 

A very simple solution. which at fmt does not seem consistent 
with the idea of decision feedback equalisation but which proved 
to work fine, is that instead of making binary decisions, we 
allow the quantiser to have more levels of output, say 20 or so. 
A pixel cut by an ink boundary is then estimated to be mid- 
grey. This multiple-level signal must be applied to the feedback 
filter. The output to be used for further processing can remain a 
multiple-level signal, but it can be thresholded as well. 

3 Experiments 

3.1 Deblurring of a discrete image 

In [BL901, Biemond. Lagendijk and Mersereau describe iterative 
methods to deblur images using knowledge of the point-spread 
function of the blumng process. They show that the results can 
be improved if they use extra knowledge about the original 
input image, e.g. that it is binary. In one of the described experi- 
ments in [BL90], the filter used for blumng has a point-spread 
function which has the value one inside a circle with a radius of 
7 pixels and 0 outside this circle. The values of point-spread 
function elements close to the radius are determined by the frac- 
tion of the pixel coverage of the circle. After blurring, noise is 
added such that the SNR became 30 dB. In [BL90], SNR is taken 
as the ratio of the variance of the blurred image (before noise 
addition) and the variance of the noise. The deblumng shown is 
quite successful. For the best parameter setting, the deblurred 
image might become identical to the original binary image after 
thresholding at the 50% level, except for some errors at the 
blacklwhite boundaries [La90]. The deblurring in [BL90] is an 

iterative process. Using a conjugate gradient method, in the 
order of 30 iterations are required for a good result b901.  Each 
iteration requires among other things two convolutions with the 
point-spread function of the blurring process, which has a s i x  
of 15'15 for the circle with radius 7, yielding in the order of 
13500 multiplyladdition operations per output pixel in total. 

In order to qualitatively compare the performance of the combi- 
nation of DFE and a receiver filter with the iterative approach 
of [BL90], we use a synthetic image given in Fig. 2. We blurred 
this image with a circular filter with radius 7, and added noise 
to obtain a SNR of 30 dB, see Fig. 3. We tried several values 

for I u: to optimise the receiver and feedback filter. A val- 
- .  

ue of 25000 (44 dB) gave good equalisation results. We have tak- 
en here a receiver filter of size 25.25. The feedback filter size is 
taken as large as required in order to suppress all trailing IS1 
(39.20, because the blumng point-spread function is 15.15 in 
size and the feedback filter has to be causal). The use of larger 
filters resulted in a very limited improvement 0.' the perfor- 
mance only. The result of the equalisation of the image in Fig. 3 
is shown in Fig. 4. It contains 333 errors (0.5%). Decreasing the 
noise level of the image in Fig. 3 with 3 dB and processing this 
using DFE and the receiver filter resulted in an image identical 
to the original binary image. 

On the basis of this limited experiment, we observe that for 
this application. the two methods show a similar performance. 
However, the number of operations required for the iterative 
method in [BL90] is much larger. As already indicated, some 
13500 operations per pixel are required. Our method requires 
one convolution with a 25'25 point-spread function (receiver fil- 
ter) and one with a size of 39'20 (feedback filter), yielding in 
the order of 1000 operations per output pixel in total. 

Note that in our experiment, as well as in the experiments 
shown in Fig. 24 and 25 of [BL90]. the original image was 
already discrete. In practise, the unblurred image (scene) is con- 
tinuous. This is not according to the models used to develop 
both methods. Tbe results for our method are then not as spec- 
tacular as shown in this section. but they are still quite useful 
as we will see in the next section. We expect that the results 
using the iterative method will also be less good if an image 
coming from a camera is deblurred. 

3.2 Some 2-d experiments using camera input 

In this section, we present some experiments using images 
obtained with a camera from text on paper. We also use an 
image of a clear sheet of paper, to correct the white level of 
images with text. After correction, we found that the intensi- 
ties on the white parts of the paper still had a variation of about 
10% peak-to-peak, due to the paper smcture and system noise. 
The standard deviation of the intensities of the white parts is 
about 2.5% of the average intensity of these white pans. The 
white intensity is 200 and the black intensity is 25. This means 

that we have quite a high noise level ( u ~ / u v 2  = 300, assuming - 
equal probabilities for black and white). The gamma factor of 
the camera was set to 1. 

We used two input images for the experiments using camera 
input They are shown in Fig. 5 and 6. They are both whitecor- 
rected images of text. The lower-case characters in Fig. 5 are 
about 10-12 pixels high (x-height in typographical terminolo- 
gy). The characters in Fig. 6 are smaller. The lower case letters 
in this image are about 8-9 pixels high. 

A statically thresholded image of input image with large charac- 
ters is shown in Fig. 7. The threshold taken is the average of the 
saturated black and white levels. Note that this threshold is 
sometimes too high, because at the characters 'a' and '=' some of 
the white is thresholded to black. Note also that the threshold 



is sometimes too low, because the characters are somewhat thin. 
Both effects are due to the low-pass filter characteristic of the 
"channel" (camera + optics). 

A dynamically thresholded [Be861 image of input image with 
large characters is shown in Fig. 8. A window size of 3*3 is 
used. The width of the characters is much more correct now. A 
problem with the dynamically thresholded images is that in 
low-conwast areas, the noise is thresholded, so that the paper 
and the inside of the black bar become noisy instead of constant 
white and black respectively. 

We used the black bar in Figs. 5 and 6 to estimate the point- 
spread function of the imaging system. We assumed that the 
imaging system has a Gaussian point-spread function, with a 
possibly different sigma for horizontal and vertical. The step- 
response of a system with a Gaussian impulse response is the 
error function. Measuring a horizontal profile through a verti- 
cal edge of the bar and fitting an error function provided us 
with an estimation of the horizontal sigma. Likewise, we esti- 
mated the sigma for the vertical direction. The imaging system 
used a CCD camera (HTH MX). The images were taken in as 
interlaced images. The horizontal sampling clock was set such 
that square pixels were obtained. For this imaging system, the 
sigma found in horizontal direction is 1.26 (measured in pixels) 
and the sigma found for the vertical direction is 1.02. These val- 
ues have been used for the "channel-model" in all our experi- 
ments. The error from this approximation turned out to be low; 
the maximum error relative to the largest point-spread function 
element was smaller than 2% for almost all point-spread func- 
tion elements, with an exception of 4% for one element for 
both directions. 

We equalised the camera plus optics assuming a Gaussian point- 
spread function with the measured sigmas, using a 9'9 receiver 
filter and a 6*11 feedback filter. The filters were optimised 

using 50 for 0:/0,2 at the receiver input We used binary DFE 
- .  

to obtain the image in Fig. 9 from the image with small charac- 
ters in Fig. 6 (Section 2.1). We took 200 for the white level and 
25 for the black Icvel. The values used in the system were first 
convened to get a zero D.C. level (refer to Section 2.3). That 
meant that 112.5 was subtracted from all the pixels in the input 
image before it was fed to the receiver filter. This offset was 
addcd to the final output to correct it. 

Fig. 10 shows the image which is obtained using a multi-level 
quantiser using the image with small characters as input (Fig. 
6). In this case. the quantiser Q produces 20 levels from 25 to 
200. When this image is thresholded at D.C., we get the image 
in Fig. 11. If we compare Figs. 9 and 11, we see that the edges 
of the characters in Fig. 11 are much less ragged than those in 
Fig. 9. This is because each binary decision at character borders 
in Fig. 9 is in effect wrong, because these borders may cut right 
through the pixels. However. for Fig. 9, this does not lead to 
severe error propagation in the feedback loop. In Fig. 11, the 
decisions are more precise which reduces the error considerably. 

Using a higher u ~ / u ~  (>500) for the optimisation of the fil- 

ters resulted an increased error rate for both a binary and a mul- 
ti-level quantiser and even in severe error propagation for binary 
quantiser. Much less error propagation was observed for a multi- 
level quantiser. 

Note that the quality of the result using DFE for the image 
with small characters is similar to the quality of the result of 
static thresholding for the image with large characters. 

Note that the output as presented in Fig. 10 is useful as well. 
The image in Fig. 10 is much sharper than the one in Fig. 6. 
Apparently. multi-level DFE can serve to enhance images. 

4 Conclusions 

In this paper, we have discussed the use of decision feedback 
equalisation (DFE) in order to deblur images from binary scenes. 

DFE assumes that the original image is discrete and binary. If 
this assumption is met, we can obtain results which are similar 
to results obtained by iterative constrained restoration [BL90]. 
The computational cost, however, is much lower. 

DFE, using a quantiser of only two levels is not suited for the 
processing of blurred images taken in with a camera from binary 
scenes. The resulting images show much noise near edges and 
sometimes much error propagation. This is because the assump- 
tion of a discrete original image (= binary scene) is not met. 

DFE using a quantiser with more levels (more than 20 or so) in 
the feedback path, but with a thresholded output, yields better 
quality binary images than straightforward thresholding. In par- 
ticular, lower case letters on paper, obtained with a camera and 
sampled such that they are 8-9 pixels high (x-height in typo- 
graphical terminology), appear quite good in the binary output 
(Fig. 11). Straightforward thresholding of these characters 
when they are sampled such that they are even 50% larger (10- 
12 pixels) gives worse results (Fig. 7). Dynamic thresholding 
[Be861 with a window size of 3*3 gives good results for the 
larger characters as well, but has problems in low contrast areas. 

A consequence of the previous conclusion is that using the grey- 
level output of a camcra and DFE processing, an area that is 2 to 
3 times larger can be imaged with the same quality of the 
resulting binary image than when straightforward thresholding 
of the camera output is used. The required processing to do this 
comprises two spatial finite impulse response linear filters, a 
quantiser and an adder. To be able to use DFE, one has to know 
the point-spread function of the imaging system and the noise 
Icvel. Furthermore, it is required to know the black and the 
white levels, which requires that all pixels are corrected for the 
sensitivity and lighting variations. This constraint can be 
relaxcd somewhat by the use of a multi-level quantiser in the 
feedback path. 

DFE using a quantiser with more levels (more than 20 or so) in 
the feedback path, without a final decision threshold can be used 
for image enhancement. 
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Fig. 1. Decision feedback equalisation using a receiver filter. 

THE WICK B R W  FOX JUIBS OUER THE 

Wf DOG. M WICK. Y. FOX J W S  
* 

OVER THE LIIZI' DOG; 012345618901. i : 

t)E WICK BROW FOX JUlPS OUER T M  

LRZY DOG THE WICK RRCW FOX 

OVEP TM L W  DOG, 01234567890'. i 

THE&lCK BRQUIFOX JURSOUEP: THE 

LkZ* DOG THE WICK BROW 4%- JJYY 

OVER IW LAZY DOG, 0 1 ~ 3 4 s i . r n 1 ,  J 1 

n € m 3 ' ~ F O x J I * P S O U E R T H E  

L e a  oa-. t'tE mna B R M  FOX JUlPS 

OVER THE LAZY 312345678901, i 8 

Fig. 3. FIS 2 hlurrcd a ~ l h  .I L I ~ L ~ C  01 Fig. 4. Result of DFE and recelver fdter 
radlus 7 and nddll~vc nolse (SNR 30 dB). processing on the Image in Rg. 3. 

Fig. 2. Original binary image (256*256). 
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Fig. 5. Image with large charactcrs 
coming from a camera (256*256). - 
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Fig. 6. As in Fig. 5, but with smaller Fig. 7. Large character image (Fig. 5). Fig. 8. Large char,~clcr imagc (Fig. 5), 
characters (256*256 pixels). thresholded with a fixed threshold at 113. dynamically lhrcsholdcd using 3*3 window. 
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Fig. 9. Small character image (Fig. 6).  

processed using binary DFE (u:/uV2 = 50). 
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Fig. 10. Small character image (6). pro- Fig. 11. Image in Fig. 10, thresholded at 
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