
MVA.90 IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

A HIGH SPEED WORD MATCHING ALGORITHM
FOR HANDWRITTEN CHINESE CHARACTER RECOGNITION

Katsumi Marukawa, Masashi Koga, Yoshihiro Shima,
and Hiromichi Fujisawa

Central Research Laboratory, Hitachi, Ltd.
1-280 Higashikoigakubo Kokubunji-shi Tokyo, 185 JAPAN

(Tel 0423-23-1111, E-mail: ma~kawa8hcrlgw.crl.hitachi.co.jp)

ABSTRACT
A new high speed word matching algorithm for

handwritten Chinese character recomition is presented. A -
continuous string without delimiting space is recognized in
real time by using this algorithm. Errors and rejects of an
optical character reader arc corrected to meaningful
characters with the help of a dictionary. This algorithm
uses a finite state automaton (FSA); the FSA's transition
table is condensed by the representation device of the FSA to
reduce the processing time of table generation and state
transitions. Words can be extracted from any position in the
continuous string. The recognition process is 6.8 times faster
than a conventional automaton-type algorithm. The
algorithm was run on 5,032 handwritten Japanese sample
addresses. In the experiment, 96.6 percent of the recognition
errors and rejects wcrc corrected in real time.

1. Introduction

It is desirable for a data input system to have character
recognition, speech recognition, and so on [11[21[31[41[51[61. In a
data input system, word matching plays an especially
important role in automatically recognizing large input data.
It has two objectives. First, in order to be practical, it must be
much fastcr. The other objective is to resolve ambiguities of
character recognition errors and rejections.

Some word matching algorithms have already been
developed [71[81[91. However, these wcrc designed to
recognize English letters. Word matching algorithms for
Chinese character recognition are classified into two
categories. One category is (a) a compound word matching
[10], and the othcr category is (b) an automaton-type word
matching [Ill . In category (a), a string is compounded of
candidatc characters. I f the string exists within a
dictionary, the string is regarded as a candidate word. When
a continuous string consists of multiple words, this algorithm
creates huge strings. Therefore, it is very time-consuming and
is not suitable as the algorithm that processes a continuous
string. On the othcr hand, algorithm (b) uses an FSA [121[131.
The FSA is made from candidate characters. Words to input
to the FSA are searched from within the dictionary
according to candidatc characters. As a result algorithm (b)
is fastcr than algorithm (a). But in order to be practical it is
necessary to improve algorithm (b) to process at still higher
speeds.

This paper proposes a high speed word matching
algorithm that improves algorithm (b). In the proposed
algorithm, an FSA with penalties is used, and it is condensed
by the representation device of the FSA to reduce the
processing time for table generation and state transitions.
Also, words at any position are extracted out of the
continuous string in ;eal time. The effectiveness of the
proposcd algorithm was ascertained by an experiment on
5,032 handwritten Japanese addresses.

2. Word matching problem for handwritten
Chinese characters

2.1 Word matching target - -

Japanese write a sentence like one continuous string
without delimiting spaces. Therefore it is important to
extract words from any position in the string. Also, the
Japanese language includes three kinds of character sets:
Chinese characters, Hirakana and Katakana. There are
about 8,000 characters.

A continuous string written on a. voucher for example, is
scanned. Up to K candidates foreach character are output. K
is about 20 in the case of handwritten Chinese character
recognition. Then a candidate lattice is made from candidate
characters as shown in Fig. I. For length S of the string, it
becomes a K*S matrix. The word matching algorithm needs
to extract the right words from this lattice in real time with
the help of a dictionary consisting of tens of thousands of
words. Also, the character recognition dose not always output
a right character into candidates. So, even if several correct
characters don't exist among the candidates, the right words
need to be extracted from this lattice.

2.2 Conventional word matching
As mentioned earlier, the approaches to word matching

for handwritten Chinese characters fall into two categories.
First, the compound algorithm makes a string to compound
candidate characters. If the string exists in the dictionary,
the string is regarded as a candidate word. The length of a
word is L and the number of compounded strings is

c ~ = ~ , ~ c ~ = ~ , ~ K ~ . When K is about 3 1101, this algorithm has
no problem. But when K is approximately 20, it is very time-

Handwritten string

Candidate lattice

~ --

Fig. 1. Candidate lattice example

consuming. Therefore, this algorithm is inadequate. In the
automaton-type algorithm [SI, on the other hand, as one
Chinese character is rcpresentcd by 2 bytes, a statc transfers
two times for one written character according to an uppcr-
byte and a lower-byte of each character constructing a word
as shown in Fig. 2. First, a state transfers from state P to one
statc of Q1, Q2, **, QK, Qother according to the uppcr-byte
(U1, U2, **, UK), or other. Other is a byte separate from the
upper-bytes. Secondly, a state transfers from the transferred
state to state R according to the lower-byte (V1, V2, **, VK)
or other. At the same time, the pcnalty(PL) is read from the
FSA and accumulated. The FSA is represented by using a
transition table and a penalty table. The transition table
shows the next transition state. The penalty table shows the
transition's penalty. These tables arc 256(=28) raws by
(K+l)*S columns as shown in Fig. 3. Each element is one byte.

3. High speed word matching algorithm

3.1 System architecture
The proposed system consists of a character recognition

part, an automaton generator, a high speed word matching
part, a word dictionary, a word search controller and a
candidate file as shown in Fig. 4. The general processing flow
consists of four stages. First, a handwritten string is scanned,
and a character recognition part outputs up to K candidate
characters for each character. A candidate lattice is made

from candidate characters. In the second step, the automaton
generator generates a high speed FSA from the candidatc
lattice. In the third stage, the word search controller
searches words included in a word dictionary based on
candidate characters, and they are input to the high s p e d
word matching part. Then, word matching is carried out by
using a word extracting method. Finally, only candidate
words are output to the candidate file.

3.2 Principle of algorithm
This algorithm transfers once for one character according

to the code that has compressed a 2-byte code. The processing
time of the table generation and state transitions is reduced
by the representation device of the FSA and how a candidatc
word is estimated. Also, this algorithm extracts words at any
position of the continuous string.

3.2.1 Representation of FSA
The high speed FSA is made from the candidate lattice.

A state transfers once for each character constructing an input
word. The FSA has (written characters+l) states and
(candidate characters+l) paths as shown in Fig. 5. The
penalty and the compressed code (U) of the candidate
character are given to each path. The state number
corresponds to the written position number. When a
compressed code Ui is input to state P, a state transfers from
state P to state Q through path Ui. At the same time the

Character

Automaton

High Speed
Word Matching

dictionary

Fig. 2. Conventional FSA
Fig. 4. System architecture

Q' . Qahrr

Fig. 3. FSA table of conventional automaton-type

Other [PLotherl i
Fig. 5. High speed FSA

Bit-flae table Penaltv table

Compressor
Character con:?+ code

P :

Switch

Bi
I -:any value

Penalty

Fig. 6. Processing flow of penalty calculation

penalty PLi is read. This penalty is assigned according to the
order of the outputs of the character recognition. The
charactcr recognition outputs candidate characters in order of
highest reliance. So the smaller the penalty, the higher the
reliance of the candidate character. In the word matching
process, a state transfers from the starting state to the next
state after each compressed code constructing a word is input
to the FSA. The penalty is read from the FSA and
accumulated whenever a state transfers. This process is
repeated until the end of the word. The accumulated penalty
represents the ambiguity of the word. Only when the
accumulated penalty is smaller than some value, is the word
regarded as a suitable word and output to the candidate file.
When the accumulated penalty becomes larger than the
value, the word matching is cancelled. The larger the value
set, the higher the reliance of the word matching. However,
proccssing time is prohibitive and the number of unsuitable
words increascs. So, the value necds to be set by a trade off
betwecn the processing timc and recognition rate.

This algorithm's FSA uses a bit-flag tablc which
improves the transition table and the penalty table. The bit-
flag tablc (BFT(i,j)) has the compressed code (i) as row and
position number (j) as column. The bit-flag table and the
penalty table are represented as shown in Fig. 6. The general
process of the word matching consists of a tablc generation
and a pcnalty calculation. The tablc generation proccss
consists of 2 steps. First, all elements of the bit-table arc
cleared. Second, flags are set only at elements where
candidate characters exist. For example, when there are
compressed codes Ul,U2, ..,UK of candidate characters at
position Q, flags of BFT(Ul,Q), BFT(U2,Q) , -, BlT(Uk,Q)
are sct. As each element is represented by 1 or 0, this table is
represented by a bit and condensed. Therefore this table is

where T2 is the processing timc per written character and N
is the number of words searched per candidate character.

3.2.2 Word extracting method based on shifting
word matching position

This method extracts words a t any position of the
continuous string by using the high speed word matching
algorithm. The principle of the method is that a starting
address controls the state which starts the word matching as
shown in Fig. 7, and the word matching is carried out. Thus, it
is possible to extract words written at any position. This
method has two procedures. First, the starting address is set
to an initial state. The high speed word matching is carried
out. Only suitable words are output to the candidate file.
Second, the starting address is shifted by one state and the
word matching proccss is repeated. The latter procedure is
repeated until the starting address reaches the end of the
state. Only when the following condition is satisfied, is the
word matching carried out. The condition is that the length
of an input word is smaller than the number of states that the
word matching has not yet started. So the timc (T) to proccss
the continuous string is expressed as follows.

T=TI-S+T2.L*N-K*S (3)

3.3 Word search method using bit-flag table
We propose a word search mcthod to improve the

conventional method 181. The conventional mcthod searches
words from within a large dictionary by using candidate
characters. The dictionary is constructed from index tables
and a word table. Words included in the word table are
sorted by the same key character and searched by using index
tables. It is supposed that the Pth character of words is

cleared by a used register at the same time. The penalty table
(PLT(i,j)) is generated by a byte. As described below, as this
table is accessed according to the flag of the bit-flag table, it
does not need to clear it. The processing time of the table penalty
generation is expressed as follows.

n -s (I),
where TI is the processing time per written charactcr.
Also, the process of penalty calculation is described as

follows.
IF BFT(Ui,Q) = I THEN
PLT(Ui,Q) is access and PLT(Ui,Q) is accumulated.

ELSE
PLothcr is accumulatcd. Namely Ui does not exist among

the candidates at position Q.
That is, the pcnalty is accessed from the pcnalty tablc only
when the flag of the bit-flag is sct as shown in Fig. 6. The @state to start word matching
proccssing time of the pcnalty calculation is expresscd as
follows.

T2.L*N-K (2), Fig. 7. Word matching control for word extraction

Word dictionarv

Fig. 8. Dictionary represen

regarded as the key. When the Pth character is included in
candidate characters, the right word is obtained. In the
conventional method, there are cases that the same words
are searched by plural keys at different points. When such a
syntax analysis is postprocessed, it is undesirable to include
the same words in the candidate file.

The proposed word search method avoids this by using
the bit-flag table shown in Fig. 8. The word tablc is sorted by
thc 1st key. The words having the samc Pth kcy are linked
by the Pth key pointer. The method consists of the following
4 steps. For this explanation one word is written on a sheet
and P is 2. First, candidate characters are regarded as the 1st
key. Words (wi, wk, w1, 0.1 are searched by using the 1st
index table, and are loaded into a searched word table. In the
second step, words (wi,wk,wp ..I are still scarchcd by the
2nd index table. In the third stage, these words are checked
by using the bit-flag table whether they have been already
searched or not. The check process is described as follows.

IF BFT(F(C), 1) = 1, THEN
Search the next word. The word has already been
searched.

ELSE
Load the word. The word has not been searched yet.

Here, F is a compress function, and C shows the 1st character
of the word that is searched by the 2nd key.
The reason why the bit-flag table is used, is that the
compressed code of the 1st character of the word that is
searched by the 1st key corresponds to the set flag. This is
because the bit-flag table is made from candidatc charactcrs
and words that are searched by the 1st key are based on
candidate characters. Finally, only words (wi, wp, - 0) that
haven't been searched yet arc loaded to the searched word
table. By repeating this procedure until the end of a state, it
is casy to apply the word extracting method.

4. Experimental results

We implemented this high speed word matching
algorithm in C language at a workstation. The workstation
used in the experiments, has a 32bit cpu (MC68020, 20MHz)
and a 16 Mbyte main memory.

4.1 Processing time
We measured the table initialization/creation time and

the penalty calculation time per written character for the
conventional automaton-type and the high speed word
matching as shown in Table 1. Also, our measurements
indicated that about 42 words (N) are searched per
candidate character and the length (L) of the words is 3
characters on the average for Japanese addresses. We

tation for word search

supposed that 32 characters (S) are written as a continuous
string and K is 15. We estimated the ratio of the processing
time of the conventional automaton-type to that of the high
speed word matching. As mentioned above, the processing
time is exprcssed as in equation (3). In the case of the
conventional automaton-type, t l and t2, as shown in Table 1,
arc substituted in T1 and T2 of equation (3). Its processing time
is 5020.2 mxc. Also, that of the high speed word matching is
743.7 mscc to substitute t3 and t4 in TI and T2 of equation (3).
Thus, the ratio is estimated at 6.8, that is, the high speed
word matching algorithm is 6.8 times fastcr than the
conventional automaton-type algorithm.

4.2 Application to handwritten Japanese addresses
We verified the effects of the proposed algorithm whcn

applied to handwritten Japanese addresses. A Japanese
address consists of geographical names arranged in a
hierarchical structure listing prefecture, city, and town in
order. The dictionary consists of four hierarchical tables and
two index tables for each. The hierarchical tables consist of
geographical names and links. The ambiguity of a candidate
string is calculated by using the penalty of extracted words.
The written address is recognized by this ambiguity value.
The algorithm was run on 5,032 sample addrcsses. The
average length of the address was 12 characters. As a result,
the average processing time was 341.52 msec. This processing
time was near the estimated valuc based on equation (3).
Also Fig. 9 shows the example that " hrf'"(ga) of a written city

Table 1. Processing time per written character

creation

(unit : msec)

Input image :

Matching result : R%7[3EEI%%*%g? %

Fig. 9. Corrected example using this algorithm

name "#$>b;'$"(higashi-koigakubo) was corrected to "9" of a
dictionary word " rfi:Bq@ "by the word matching algorithm.
Fig. 10 shows the relation between a correction rate of the
recognition errors and rejects and the oder of candidate
characters. This figure indicates that the correction rate is
independent of the character recognition rate. 96.6 percent of
the recognition errors and rejects were corrected for each
processed candidate character.

5. Conclusion

We proposed a high speed word matching algorithm for
handwritten Chinese character recognition. This algorithm
can recognize a continuous string of handwritten words
without delimiting space in real time with the help of a
word dictionary. The recognition process is 6.8 times faster
than a conventional automaton-type algorithm. Also, 96.6
percent of the character recognition errors and rejects from
5,032 handwritten Japanese sample addresses were corrected
in real time.

80 { . number of sampler : 5,032
u

@ average length of addresses(S) : 12

a number of candidate characters(K) : 15
V

Order of candidate characters

Fig. 10. Correction rate for Japanese addresses

REFERENCES

IllJ.Higashino, H.Fujisawa, Y.Nakano and M.Ejiri, " A
knowledgebased segmentation method for document
understanding",Proc.8th Int. Conf. Pattern Recognition,

pp.745-748 (1986)
[ZIY.Shima, T.Murakami, J.Higashino, Y.Nakano and

H.Fujisawa,"A Segmentation Method of Color Document
Images for Multimedia Contents Retrieval", Proc. R I A 0
88, Use-oriented Content-based Text and Image Handling
(AFIPS), Cambridge, vo1.2, pp.lOO1-1008 (March 1988)

[3]H.Fujisawa, H.Yashiro, T.Murakami, Y.Shima and
Y.Nakano,"Document Analysis and Decomposition
Method for Multimedia Contents Retrieval", Proc. the
Second Int. Symposium on Interoperable Information
System (ISIIS '88), pp.231-238 (Nov. 1988)

[4JH.Yashiro, T.Murakami, Y.Shima, Y.Nakano and
H.Fujisawa,"A New Method of Document Structure
Extraction Using Generic Layout Knowledge", Proc. Int.
Workshop on Industrial Applications of Machine
Intelligence and Vision (MIV-89), pp.282-287 (April 1989)

[5]Y.Shima, T.Murakami, M.Koga, H.Yashiro and
H.Fujisawa,"A High Speed Algorithm for Propagat~on-
type Labeling based on Block Sorting of Runs in Binary
Images", Proc. the 10th Int. Conf. on Pattern Recognition
(10th ICPR), vol.1, pp.655-658 (Junc 1990)

[61H.Fujisawa and Y.Nakano,"A Top-Down Approach for
the Analysis of Document Images", Proc. IAPR on Syntactic
b Structural Pattern Recognition , pp.113-122 (June 1990)

[7]E.M.Riscman and A.R.Hanson,"A contextual Postprocess-
ing system for error correction Using binary n-Gmms", IEEE
Trans. on computer, vo1.C-23, No.5, pp.480-493 (May 1974)

[8]E.Tanaka, T.Kohasiguchi and K.Shimamura,"High Speed
String Correction for OCR, Proc. 8th Int. Conf. on Pattern
Recognition (October 1986)

[9]W.H.Cushman, P.S.Ojha, and C.M.Danicls,"Usablc OCR :
What are the minimum performance requirements ?", CHI
'90 Proc. of ACM, pp.145-151 (April 1990)

[lO]T.Sugimura,"Error correction method for character
recognition based on confusion matrix and morphological
analysis", Trans. of lapanese Inst. of Electron. Infor. and
Comm. Eng. , vol.J72-D-11, pp.993-1000, 1989 (in Japanese)

[ll]K.Marukawa, M.Koga, Y.Shima and H.Fujisawa,"
Automaton-type Word matching for Character input
systems", National Convention Record of lapanese Inst. of
Electron. Infor. and Comm. Eng. , 6-80, 1990 (in Japanese)

[12]W.A.Wulf, M.Shaw, P.N.Hilfinger and L.Flon,
"Fundamental Structure of Computer Science", ADDISON
WESLEY (1981)

[lJ]A.V.Aho and M.J.Corasick,"Efficient String Matching",
Corn. of ACM, vo1.18, No.6, pp.333-340 (June 1975)

[14]Y.Iida and T.Sugiyama,"A Study of word matching
method with Dictionary for pattern recognition", Iapanese
Inst. of Electron. Infor. and Comm. Eng. , PRL82-77, pp.93-
98,1982 (in Japanese)

