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ABSTRACT

To develop a contour extraction tool for image
simulations, the applicability of the Hopfield network is
examined on the edge image around the roughly specified
guide points. Our computational theory is that the edge
map of the stretched belt-like images along the guide
points should obey the following four constraints. (1) In
the longitudinal direction, the contour should consist of
only one pixel. (2) Contour points are usually located
close to those in the neighboring columns. (3) Contour
points are usually located on the detected edge pixels in
the edge map. (4) Contour points are usually located near
the horizontal center of the edge map. Furthermore, to
obtain a size independent energy function, we developed a
scaling relationship. Using the energy function
developed according to these observations, the
experimental results are shown in which contour
extraction is succesful for the most part.

INTRODUCTION

Recently, simulated images such as color change
simulation images and collaged images have been used in
many fields.

In most of the cases, when we simulate images, some
object regions have to be segmented in advance. This is a
very tedious task when the regions are manually cut out
pixel by pixel.

At the present stage, unfortunately, fully automatic

image segmentation techniques for natural imagcs“]'[z]
can be applied only to simple limited cases. Under these
conditions, we thought it better to devise an image
segmentaion tool which employs guide information, such
as the color of the object region or the rough position of
the contour.

In this research, the user first gives the rough contour

position information and then the Hopficld network!3J is
applied to extract the contour from the edge image around
these roughly specified guide-points. In our foumulation,
we started by constructing the computational theory of
the contour extraction in the rectangular images in order
to obtain the energy function.

Coclficients of the energy [unction often depend on
the size or the resolution of the system. This is true in our
work, too. If our coutour extraction software must locate
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its parameters, such as energy coelficients, every time the
image size changes, then it is a useless tool. In order to
construct a size independent energy function, we tried to
derive a scaling relationship between the coefficients of
the differet sized images by making cerlain assumplions.
Using this scaling relationship, we only have to decide
suitable coefficients for one size of the image and then
deduce the coefficients of images having different sizes.
In the following sections, the basic formulation of our
contour algorithm the scaling
relationships are presented. Then the experimental results

exlraction and

are shown.
BASIC FORMULATION

Outline of the Process: In this rescarch, the user
specifies the rough contour positions, The outline of the
process is as follows.

(P-1) The operator specifies the position coordinates
of points along the contour of the region he wants 1o cut
out ( typically, 20 or 60 points ).

(P-2) Resample the belt-like narrow region along the
specified points (FIG.4) into a slender rectangular image
( typically, 40 or 50 pixel width and 1000 or 2000 pixel
length ).

(P-3) Get the edge map in the rectangular images using
suitable edge detection operations, such as derivatives or
zero-crossings (FIG.5). In this work, we used zcro-
crossings.

(P-4) Extract the contour in these rectangular images
by operating the Hopfield network (FIG.6). In this
process, the ecnergy [functions which satisly the
computational theory stated in the following subscction
are used,

(P-5) Resample the extracted contour in the rectangular
images into the original image again and make the
detailed contour of the intended region (FIG.7).

Computational Theory: In process (P-4), as
stated above, we adopted the Hoplield network to extract
the contour. Then, we defined the energy function,
following the Marr's theory of sturcopsisld] using the
computational theory of the contour extraction in the
rectangular images.

(C-1) Only one pixel in the longitudinal direction is
part of the contour.



(C-2) Neighboring column contour points are usually
locate close to another.

(C-3) Contour points are located on the detected edge
pixels in the edge map.

(C-4) Contour points are usually located near the
horizontal center the edge map.

Energy function: We constructed an energy
function E according to the above computational theory.
In this formula, i and j denote the logitudinal and the
horizontal suffix of the slender rectangular
image,respectively, vij is an activation value at the (i,j)
pixel, d(lj-j') expresses the distance between the (i,j)
pixel and the (i',)') pixel, Vﬂij is the value of initial edge
map, and 1(i,j) denotes the distance between the (i,j) pixel
and the center of the column.
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The Ea and Eb are used in accordance with (C-1), E¢
with (C-2), Ed with (C-3), Ef with (C-4) of above
computational theory, and Ee is an offset of the energy.

We use the ordinary Hopfield network process to find
the minimum cnergy configuration with the following
recursive equations, where T is a relaxation constant and
M is 2 parameter of the sigmoid function.

L, L 8
dt T odvy

Vij= 1—( 1+ tanh (9—1)]
2 Ho

In this calculatoin, the initial values are set to be equal
to the initial edge map and the cyclic boundary condition
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in the column direction is used.

Search for the coefficients using the small
test Images: To decide the set of coefficient, we
selected a set of fundamental edge patterns which
expresses most of the edge pattern. To obtain a set of
coefficient which favor a desired pattern as a minimum
set, we prepared a desired pattern and two compared
patterns for each initial edge pattern. We then searched
for the set of coefficients which satisfy the following
conditions.

(5-1) Desired patterns have the least energy among the
four patterns.

(S-2) Desired patterns are located at the point of local
minimum encrgy.

(S-3) When the Hopfield network is applied, the initial
patterns move and converge into the desired patterns.

The fundamental set of patterns are shown in FIG.1.
We obtained the following coefficient set.

(A,B,C,D,E,F)=(7,7,1,5,1,3)
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Fig.1 A sct of fundamental patterns used to
search for coefficients of the energy function

Resolution scaling of the coefficient: We
scaled the cocfficients in accordance with the following
assumptions.

(R-1) Under the same energy function cocfficients,
different edge pattemms converge and contours can be
obtained if they have the same resolution or the same
pixel-size.

(R-2) We can define an energy function for a
continuous image which represents the fine resolution
limit.

(R-3) Energy functions of the finite resolution can be
seen as approximations of the energy function of the
infinite resolution.

(R-4) The width of the contour is one pixel for cach
resolution edge pattern.

(R-5) Initial edge patterns also have a one-pixel-width.



Under these assumptions, each coefficient's
dependency on size can be calculated as follows.
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In these formulae, N is a column number, and M is a
row number. K is a number between M and NxM.

We can sce these scaling relationships by numerically
calculating each energy term. In FIG.2, coefficients of
11 x 11 pixel images and 44 x 33 pixel images are
compared.
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Flg.2 Some edge patterns shown with two different
resolutions. The chart below shows values of cach
energy term without coefficeients.

EXPERIMENTAL RESULTS

We applied the algorithm on the image shown in
FIG.3 after Gaussian smoothing. The experiment
conditions and parameters are shown below.

Image size: 720 x 576 pixels, 24 bit colors.

Specified guide points: 60, (the total guide contour
length became about 1786 pixels long )

Width of the belt: 10 pixels long (Size of the belt-like
image became 2400 the
resampling(FI1G.4).)

x 41 pixels after

In this experiment, we took zero-crossing of the
image. To neglect minute segments of zero-crossing, we
made a moving thresholding of 41 pixels wide (FIG.5).
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This belt-like image was divided into small images at the
guide points, and their typical length is about 30 pixels.
The result of applying our algorithm is shown in FIG.6
and the final result is shown in FIG.7. In this
experiment, coefficients are modified according to the
scaling relationships. Furthermore, an added constraint is
that the contour should be located on the specified guide
points at the far right and far left columns. These guide
points coincide with the rough position stated in the
outline of the process.

Fig.3 The experimental image( 720*576, 24 bit full-
color )

Fig.4 Belt-like region along the specified guide points

As you can see in FIG.6, most of the contour is
extracted correctly. But, we could not eliminate some
small segment which are not on the desired contour.
These are so narrow that they cannot be scen easily in the
reconstructed image (FIG.7).

DISCUSSIONS

* (1) Computational theory: We followed Marr's
theory of stereopsis in constructing the computational
theory. At first, we thought that only three constraints (
from (C-1) to (C-3)) were necessary. However, we added
(C-4) because we could not discriminate two parallel zero-
crossing segments using only these three constraints,
(C-4) is not the only possible constraint that could be
added, but it is very practical.

(2) Energy function: We considered a lot of
variations of the energy function, such as continuous and

discrete variables, boundary conditions, initial



conditions, and the form of the energy function itself.
Although we could express (C-1) and (C-3) by simply
imitating Hopfield and Tank's work on the travelling
salesman problem and Marr's theory of stereopsis, we
could not satisfactorily determine Ec in order to express
(C-2). This caused a lot of trouble. For example, some
Ec's we tried made the contour fat, failed to connect the
long segment that were apart, etc. The form of Ec we
adopted in this work is a result of a compromise.
Generally speaking, Ec's of (C-2) tend to be so weak that
the contours do not connect.

(3) Search for the coefficlents: Our search for
the coefficients of the energy function was done with a
limited set of small test images. Of course, there are a lot
of edge patterns which cannot be expressed with the
combination of our small test images. But we believe that
our treatment is sufficient because even if the perfect
coefficients are found they still cannot avoid being
trapped in a local minimums.

(4) Scaling relationship: As stated in the
INTRODUCTION, we want a size-independent encrgy
function, Our assumptions (R-1) - (R-5) are rather strong.
These assumptions have to be modified when we adopt
derivatives as edge maps. Furthermore, edges must be
sharp enough. However it must be mentioned that for
some cases when scaled energy does not result in the
correct contour, there is sometimes a different coefficient
that can extract correct result for only part of the image.

(5) Comparison with SNAKE: SNAKED] is a very
successful active contour model. Like SNAKE, our work
minimizes the energy function and needs some guidance.
However, SNAKE is a controlled continuity spline and our
work uses a two dimensional pixel array. Although, as
argued in (2) , it is very difficult for us to cope with (C-2),
SNAKE always brings about a continuous contour. Still,
we have to determine which approach is more likely to
experience local minimum traps.

(6) We believe human-guided contour extraction

techniques will become more important. Not only
examining the problems stated above, we have to
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Fig.5 Zero-crossing image of the stretched belt-like
region
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consider how to use other imformation such as color to
develop a better algorithm,
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Fig.6 Result of applying the Hopfield network

Fig.7 Final result made by reconstructing the results of

Fig.6





