MVA’'90

IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

Component labeling on SIMD-SPMD Architecture

P. Duclos, G. Giraudon*, P. Kaplan, M. Auguin, F. Boeri

Laboratoire Signaux et Systemes (LASSY. Universite de Nice, 41, Bld Napoleon [11, 06041 Nice cedex., France
*NRIA Sophia-Antipolis. 2004 route des Lucioles, 06565 Valbonne Cedex, France
giraudon@mirsa.inria.fr

Abstract

We present a component labeling algorithm for a coarse-grained
parallel architecture named OPSILA. OPSILA is an experimen-
tal general purpose multiprocessor which uses two different forms
of parallelism. The first one is a well known SIMD mode (syn-
chronous mode) and the second one is called SPMD (single Pro-
gram Multiple Data stream) which is an asynchronous mode. We
lave shown OPSILA's effectiveness for the low-level image pro-
cessing [DucsSa] and we demonstrate here its effectiveness for
the intermediate level with a component labeling implementation.
Fhe aim of the implementation is obtained after processing the
hest load balancing efficiency. So. we propose a load distribu-
tion algorithm which incorporates a tolerance factor on the load
function. This algorithm can take into consideration the initial lo-
calization of region and we show it is the better choice to the load
halancing efficiency versns the cost of list transfer. Some results
are given on real image.

1 Introduction

ln Computer Vision, image interpretation is made roughly in three
“pipelined” steps [Han78]. At each step corresponds a data struc-
ture. The Low Level vision deals with iconic structure (pixel array
level). The High Level processing works with tree and graph strue-
tures (svmbolic level). The Indermediate Level processing runs
by taking as input matrix of pixels and creating as output lists of
syibols (pixel matrix = list set). The typical algorithm of the
[ntermediate Level is the component labeling algorithin [Balx2].
Ihe component labeling goal is to obtain a set of region lists from
a pixel image. A region is a set of conunected pixels which are ho-
inogeneous for a given criterions. In general, these lists are some
reprosentations of image features like regions, contours, lines ete...

So. parallelization of intermediate process is an important
challenge in computer vision because of the mixed (iconie-
svinholic) data structure in processing. Many authors have
studied the parallelism of component labeling [Shis2], [Hum85],
[Dulls6]. [CypRo]. [Embs9] on MIMD or fine grain SIMD archi-
teetures. But component labeling is just a step towards the final
seene jnterpretation and the data structure efficiency for the next
stepannst he taken into account for a global optimization of com-
Puler VISion process,

We present in this paper, a component labeling algorithm de-
velopped in 1988 [Duessh] for a coarse-grained parallel architec-
tire named OPSILAL OPSILA is an experimental general purpose
nultiprocessor developped and huilt by the LASSY and supported
by the DRET {(research management of french army). OPSILA
nses two different forms of parallelism like PASM [Siest]. The
lirst one is aowell known SIMD mode (svuchronous mode) and
the second one is called SPMD (single Program Multiple Data
streant) whicl is an asynchronons mode. Many applications have
been implemented on OPSILA like finite elements [Shus87], ray
tracing algorithm [Forss] or particule accelerator [Maiss]. For the
Computer Vision, we have shown OPSILA's effectiveness for the
low-level image processing [Ducs®a) and we demonstrate here its
elfectiveness for the intermediate level with a component label-
ing implementation. The aim of the implementation is obtained

405

after processing the best load balancing efficiency. If we say the
processor load depends on the number of region pixels, we want
after processing the same number of pixels in each processor. In
general. this involves that we won't get the same number of region
in each processor and therefore involves a communication cost be-
tween processors which must be taken into account.

So, we propose a load distribution algorithm which incorpo-
rates a tolerance factor on the load function. This algorithm can
take into consideration the initial localization of region and we
show it is the better choice to the load balancing efficiency versus
the cost of list transfer. Some examples and results are given on
real image.

2 Presentation of OPSILA

OPSILA is a general purpose parallel architecture belonging 1o
the mixed class (see [AugS7] for more details). It runs with two
different forms of parallelisin. The fiest one is the well known
SIMD mode (a synclironous form of parallelism) [Reex1]. The sec-
ond one is called SPMD (single Program. Multiple Data Stream)
which is an asynchronous mode. These two modes are dynam-
ically configurable in one machine cvele. OPSILA is composed
of two parts : a central control unit and a parallel computation
unit, which contains p = 16 processors. p memory units and an
Omega/Benes interconnection network [Feng&1]. In SIND mode.
memory is shared : each processor can access at any address of
memory. In SPMD mode. each processor accesses ouly at its local
memory.

The scalar-control unit performs overall management of the
svstem. It consists in two processors : the Scalar Processor (SP)
and the Instruction Processor (IP). The IP manages the vector
unit (memory. network. vector instructions and syvnclironisations
between SIMD and SPMD modes).

The vector unit consists of p=2¥=16 Elementary Processors
{(PEs), each associated with a memory bank (MB). A synchrone
Omega/Benes interconnection network is used to perform data
exchanges. Particular facilities are provided as any length vec-
tors, automatic memory and network management. and indirect
parallel addressing GATHER and SCATTER. OPSILA is built
with bit slice technology. The processors are AMD 29116. Eacl
MB capacity is 96 Kbytes. The base cyele time of the machine is
700 ns. Operands can be integers of 16 or 32 bits or 32 bits real
numbers. (see figure 1 for OPSILA block diagram)

The SIMD operating mode :

In SIMD mode, the application program is entirely stored in the
SM and managed by the SP. The data (vectors and matrix) are
located in the vector memory. At the same time, each processors
executes the same instroction on different data. Two conseentive
addresses in vector memory are in adjacent memory banks. A
linear vector is such that the addresses of successive components
are in arithmetic progression. Each vector is described in SM by
a pair (E, R). E is the address of the first element in the vector
memory, and R is the common addresses difference for consec-
utive elements. In order to execute operations hetween vectors
of any length. the IP segments at running time the vectors into
subvectors of a length at most equal to the number p of EPs.

When the length of subvector is less than p. the EPs containing
no significant data are masked. the 1 handles any access conflicts
(R is odd) to the vector memory. Indirect vector addressing in-
structions GATHER and SCATTER have been defined to extend
domain applications of the SIMD mode [Shus7].

The SPMD operation mode :

Stmultaneous and separate execution of several instructions flows
is the most efficient way for handling applications or part of ap-
plications that are almost sequentially processed on purely SIMD
or pipeline machines. In SPMD mode, the same program is du-
plicated in each MB. OPSILA is then composed of a set of 16
independant sequential processors, each associated with the same
nnmber memory bank. Under SPMD mode, PEs cannot exchange
informations. Date exchanges can only occur in SIMD mode via
the synclirone interconnection network.

SPAMD mode is initialized by the IP which provides each PE
the starting SPMD code address. The machine can be dynamically
configured in SIMD or SPMID mode. This allows us to process
veetor or matrix globally in SIMD mode and locally in SPMD.
The synchronizations required for initializing the SPMD mode
and for returning to SIMD mode are a fork-join operating over
the set of PEs. As the synchronization mecanism is simple, its
operation is very efficient : transition from SPMD to SIMD mode
is made tnone machine evele after the end of exeention of the PE
with the largest work load.

Programming and environment:

The implementation of parallel algorithm on OPSILA is car-
vied out with a high level structured language named HELLENA
[Jogs6]. & PASCAL like, improved by :

o Vector instructions defined by extending saclar operations to
array of scalars (by overloading of operators) and executed in
SMID mode

o Block instructions used to enter and to leave the SPAMD mode.

OPSILA is connected to a micro-vax and a high rosolution display.

3 Parallel implementation of the compo-
nent labeling

3.1 Sequential algorithm

The main idea of the algorithm is to assign different components
with different labels [Bal32]. A component is defined as a set of
pixels connected in one of the eight directions (S-connectivity).
The labels are like equivalence tables with equivalence relation
“helongs to the same component as”™. For our propose, the result
we want obtain is a identified list for each equivalence table

The algorithm scans image, pixel by pixel. from lelt to right
and from top 1o bottom. with a window defined in figure 2. For
each current pixel, the algorithm tests the neighbourhood config-
uration and in function of this, makes some ones of the following
operations:

o create a new label (the generated labels start from 1) and a
new list.

o labeling the current pixel and put the pixel in a list

o il two neighbourhood pixels have different labels L) and L;

with Ly < La. write that Ly is an equivalent table to L,

After the scanning, the equivalence tables are reorganised and
the lists of same equivalence are merging. So. with this algorithm,
we make a component labeling in single pass over image.

The main difficulty of this algorithm is the pixel treatment
is context-dependant. The process is not homogenous and not
regular with a machine cycle. So, we can think that an asyn-
chronous architecture fits better than a synchronous architecture.
In the next section. we show an implementation with OPSILA's
asynchronous mode,

3.2 Parallel implementation
For a coarse parallel architecture, component labeling sets lollow-
ing problems :

406

e Representation and treatment of dynamic structures (lists)
in an mutiprocessor architecture. An objet parallelisin is an
asynchronous mode. Then we want a local management of
lists

o List exchanges between processors needs a definition of com-
munication tools to achieve objet parallelism.

o Load balancing efliciency for next treatments. The load bal-
ancing is a global process because it implies the knowledge of
every processor information
In fact, these problems are general problems in intermediate

and high level vision. and we illustrate them on a particular case.

We propose the following algorithm

1. Divide the picture into 16 vertical bands with one column
overlapping (SIMD mode).

In fact, dividing image in regular square minimizes the length
of frontiers, but it increases the communication costs with
special treatments for corners which belong at 4 processors.

2. Run the sequential algorithm into every processor (SPMD
mode), The algorithm runs in single pass.

3. For each processor, make a label merging process by exchange
of overlapped vertical columns(SIMD and SPMD mode)

4. Compute a global labeling by a merging of 16 equivalence ta-
ble and compuie the load distribution between processors 1o
obtain a homogenous load balancing (sequential mode real-
ized by scalar processor)

5. Each processor puts sub-region list in a output mailbox for
other processor (SPMD mode) in relation to the equivalence
table. Mailboxes are exchange in SIMD mode. Then each
processor merges sub-region lists which are in its input mail-
box (sending from the other processors) (SPMD mode).

3.2.1
A load balancing is an application f: O — P, where O is a set
of u objects Oy.....0, and P is a set of p processors Py, ... P, We
define :

o 1, as the cost of object i for 1 € [1, n]. In our case, the object
is a region-list. and we consider the cost as the number of
pixels.

o L, as the cost of processor u, u € [1,p], where L, = ¥ m;.
i.e. equal the sum of object costs into processor u,

Optimal algorithm for load balancing

Now the problem is to minimize a global cost from elementary
cost associated to object. A solution consists to find p" solutions
and to take the best.

So to avoid this. we introduce a quality criterius of the load dis-
tribution process which measures the efficiency Ec of load distri-
hution
Ee = Lt / p.Lmax

where Lt = total load = 30_, P,
Lmax = load of the processor which is the most loaded
p = number of processor.
For Opsila, the best load function (Fe=1) is for

Lmae =L, = L; = Lt]16,i # j,1 <i,j <16 (1)

So, if q is the number of objects and p the number of proces-
sors, the optimal algorithm is :
1. Find the processor I, the least loaded among p
2. Find the ohject O, with the highest cost among the ohjets
remaining
3. Put O, in P,
4. goto 1 until obhject list is empty
The algorithm complexity is O(g* + pg). We can reduce this
complexity by sorting objects before processing in function of ob-
ject cost.
But this algorithm does not take into account the initial local-
ization of objects versus processors. So. this algorithm does not
minimize data transferts between processors as shown in figure 3.

3.3 Best efficiency with taking account the list trans-
fer cost
Lo solve the problemm shown in figure 3. a second eriterius must
be found which takes into account costs of list transfers between
processors to obtain a complete region in a processor. For this.
we must limited the transfert.
So.we propose a load distribution algorithm whicl incorporates
a tolerance factor on the load function. This algorithm can take
into consideration the initial localization of region and it is the
hest choice 1o the load balancing efficiency versus the cost of list
transfer. So. we introduce a notion of tolerance on Ec expressed in
percent. This tolerance gives a set of the least loaded processors
and we can choose among this. the processor for which the trans-
fert cost is minimal. The optimal algorithm with load tolerance
s
L. Find the set S of the least loaded processors among p proces-
sors with a load tolerance 1
2. Find the objeet O with the Lighest cost among the objets
remaining
3. Give O 1o processor ', P € S_if the choice P minimizes
exchange cost.
1. Goto | until ebject list is empty.

4 Results

In this section. we give two kinds of resnlts about component
labeling implementation, firstly an implementation on OPSILA
with the first algorithm of load balacing. Secondly, we present a
simulation to illustrate the behavior of modified algorithm of load
halacing.

4.1 hardware constraint

OPSILA is a prototype of a parallel architecture. Because each
memory bank holds only 49kb of memory, we limit the size of in-
put image to be less than 256x256 pixels. In addition, memory
siturates with 200 lists per processor (representing about 800 pix-
els), So, we have chosen to realize a component labeling on a edge
map of a image. On OPSILA. we have computed an edge detec-
tion with non maxima suppression and taken 20 per cent of these
edges, Initial image is the well known image of girl Lena. For this
image, we have the following characteristics (with 16 processors):

s Number of edge-pixels is 6273 representing 396 different lists

o Average length of lists : 158

Average number of lists per processor 24

* Average cost per processor @ 392
4.2 Real implementation
We shown of figure 4 a complete analysis of the load balacing,
using the first algorithm. We show in figure L.a processor load
{i.e. mumber of pixel) before and alter sharing out, The efficiency
alter processing is 0.76 = 6273/16 + 510, where 510 is the load
of processor No 13, We show in figure 4.b list distribution after
labeling (first step), and after global distribution in relation with
figure La. The number of list is reduced hecause of list merging,.
Figure e presents results about emitted and received pixels for
each processor. We have found that 3935 pixels (62 per cent of
pixels) representing 173 lists have been moved.

We present on figure 5 run time in function of number of pro-
cessors we have activated. Time is given in Megacycle of OPSILA
{evele = 700 ns). Component labeling time decreases as we use
more processors. Then, with 16 processors, we obtain about 2 sec-
ondes. With 15 processors, we have a bad localization of pixels,
.o a non homogenous distribution before labeling. The 14 proces-
sors st wait the 15th which is the most loaded processor during
labeling. This effect can be reduce by an adaptive column cut.
4.3 Comparison between both algorithms of load

balancing
We present in figure 6 a result of a simulation between the optimal
algorithm of Joad balancing and the algorithm with tolerance of

407

load. We show the load balancing efficency is constant and the
cost of transfer decreases in function of tolerance parameter.

5 Conclusion

We have demonstrated in this paper the eflfectiveness of general
purpose parallel architecture OPSILA for the intermediate level
with a component labeling implementation. So, we have proposed
twao algorithms of load distribution and shown the benefit to in-
troduce a tolerance factor on the load function for a better load
balancing efficiency. We have made an implementation and tested
the algorithms on real image.

References

[Aug87] M. Auguin : "Experiments on a parallel SIMD/SPMD
architecture and its programming”. in France-Japan In-
telligence and Computer Science Symposium, Nov 1987

[Bals2] D.H. BALLARD et C.M. BROWN : "Computer Vision™
. Prentice Hall, New Jersey (1982).

[Cyps9] R. Cypher, J.L.C. Sanz, L. Snyder : “An Eprew Pram
Algorithm for Image Component Labeling™, in PAMI.
Vol 11 ., March 1989, pp 258-261

[Duessa] P. Duclos. F. Boeri, M. Auguin, G. Giraudon : “lmage
Processing on a SIMD/SPMD Architecture : OPSILA™,
in Proc IEEE of 9th ICPR. Roma. November 1988, pp
430-433.

[Ducs8b] P. Duclos Etude du parallelisme en traite-
ment d'images. Realisations sur architecture mixte
SIMD/SPMD". PhD, Universite of Nice 1938 (In French)

[Dufff6] M.LB. Duff ed.. Chapter 7 in Intermediate-Lovel Image
Processing, Ac. Press London 1986

[Emb89] H. Embrechts, D. Roose, P, Wambacq : "Component

labeling on a distributed memory multiprocessors”. in

Proc of the first Europeam workshop on hypercubes and

distributed computers, Rennes 1989, North-Holland. pp

5-17,

M.C. Forgue: Parallelisation du lancer de rayons sur un

caleulateur de type SIMD/SPMD, PLD of Universite of

Nice, Septembre 1988 (in french)

[Feng®1] T.Y. Feng : " A Survey of Interconnection Networks”, in
Computer pp 12-27, December 1981,

[Jeg86] Y. Jegou : "Le langage vectoriel Hellena™, Rapport de
Recherche INRIA No 703. July 1986 (in french)
[Hums5] R. Hummel. A. Rojer: “lmplementing a Parallel Con-
nected Component Algorithm on MIMD Architectures”,
IEEE Workshop on Computer Architecture for Pat-
tern Analysis an Iinage Data Base Management. Miami

Florida 1985

[Han78] A.R. HANSON et EML RISEMAN : "VISIONS: A Com-

puter System for Interpreting Scenes™. New York Aca-

demic Press pp 303-333 1978

J. Maillard. J. Siva. M. Auguin , F Boeri : "Accelerator

Simulation on a Parallel Computer”, European Confer-

ence on Accelerator, Rome June 1988,

A.P. Reeves : "Parallel Computer Architecture for Image

Processing”™, pp 199-206, [CCP 1981

Y. Shiloach and U. Vishkin: "An O(log n) Parallel Con-

nectivity Algorithm™. in Journal of Algorithms. 3. pp

57-67 (1982)

K. Schubert : "Vectorisation de la methode des elements

finis sur un caleulateur de type SIMD /SPMD™. PhD Uni-

versity of Nice, Octobre 1987, (in french)

H.J. Siegel andP.T. Kermerer : "PASM : a partitionable

SIMD/MIND System for image processing and pattern

recognition”, IEEE Trans on Computers, Vol ¢30 No 12.

December 1981,

[Forsg]

[Maiss]

[Ree8l]

(Shig2)

[Shus7)

[Sies1]

Scalar-Contral

Vector unit

3

Scalar

Memory

Scalar

-

Vecior
Memary
ME MB
o

Procegsor

@]
Vector

Instruction

1
|
|
I
]
|
:
|
YT ™
g%) (%

'

queue :
Network
Contraler

Interconnection Nerwork

Fig. | OPSILA block diagram

NW

NE

W

Figure J Mask sed in the algonidum

ge

O
O

2P

O O‘ at

O
O|'®
'®

1 load Dalancing

50 & Bl

O 4 yunits of loaa

O 1w

t of loag

A c

O
‘O
no s. ‘9

New load palancing
Le= 1008

Figure 3 Twa examples of load balancing giving same

efficiency Le The
a) aptimal algorithm

black oojects are moved
bl Moaified algorithm

A

1 0 {H

Figure n°5

Fhiaial

: Run time versus number of processors

Pols

nis distribution before sharing out

Polnts distribution sfier sharing out

Figure n4a

Distribution of polnts emitted

i

Distribution of points received

pr;umr
Figure n°4b

Lists distribation sfer labeliag N

Lists distribution sler sharing out

Load balancing efficiency

u
processor

Figure n°4c¢

" "
processor

Figure n° 4

Number of transferts

1600

l‘c 100
90 4
80 4
70 4
60 +
=0 -
40 4
30 4
20 4
10 4

mmoo-o-o—u—o—n—kﬁ_\n

L 1400 -

12 _ Load balancing

Looo — Transfert

408

0 100 200 300
Tolerance (in pixels)

400

Figure n®6

500

