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ABSTRACT 
A schcmc of camera calibration is proposed. The focal 

length and the orientations of the scenc coordinatc axes are 
computcd by dctecting the vanishing points of two sets of 
lincs orthogonally sct in thc sccnc. The absolute distance of 
thc sccnc coordinatc system is dctcrmincd by locating a point 
whosc scenc coordinates arc known. All points and lines are 
represcntcd by unit vectors called N-vectors, and computation 
is based on projcctivc geomctry coupled with such computa- 
tional considerations as efficiency of computation and suppres- 
sion of noisc in thc data. 

1. Introduction 
Whenever we try to implement any computer vision 

technique by using a real camera, we immediately real- 
ize the importance of accurately calibrating the cam- 
era.'-4f ') In computer vision studies, the camera imag- 
ing is modeled as perspective projection from the origin 
0 (called the viewpoint) of the camera-based XYZ- 
coordinate system onto an image plane parallel to the 
XY-plane in distance f , which is often referred to as the 
focal length, from the viewpoint 0 (Fig. 1). 

Our scheme uses a specially designed "calibration 
board", which plays the role of the scene coordinate sys- 
tem. The focal length f is computed by detecting the 
vanishing points of the lines on the calibration board. 
The absolute distance of the scene coordinate origin 
from the camera is determined by locating a point whose 
position is known on the calibration board. 

In our scheme, all points and lines are represented by 
unit vectors, which we call N-vectors. The treatment is 
based on a mathematical formalism, called computa- 
tional projective geometry, which combines projective 
geometry with such computational considerations as 
efficiency of computation and suppression of noise in the 
data. 

2. The  Camera and the Scene Coordinate Systems 
Let XYZ-coordinate system be the camera coordinae 

system with origin 0 (the viewpoint), and let XYZ- 
coordinate system be the scene coordinate system with 
origin 0 (Fig. 2). 

Let el, e2, e3 be the unit vectors lying along the f-, 
Y-, and Z-axes, respectively. Let mo be the unit vector 
starting from the viewpoht 0 and pointing toward the 
scene coordinate origin 0 (we call this-vector mo the 
N-vector of the scene-coordinate origin 0 ) .  If the abso, 
lute distance ro = 00 of the scene coordinate origin 0 
izAnown, the position and orientation of the scene 
XYZ-coordinate system are completely specified relative 
to the camera XYZ-coordinate system. 

The pose parameters ( R ,  h ) of the camera are 
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Fig. 1 Camera imaging geometry. 

Fig. 2 The camera coordinate system and the scenc coordi- 
nate system. 

defined such that the camera XYZ-c-wdinate system is 
obtained by first r o t a t i ~  the scene XYZ-coordinate sys- 
tem around its origin 0 by R and then translating it by 
h ,  where the c-onents of R and h are defined with 
respect to the XYZ-coordinate system. Then, we have 
the following result (we omit the proof): 

Proposition 1. Let 

(2.2) 

be the components of vectors e l ,  e2, e3, and mo with 
respect to the camera XYZ-coordinate system. The pose 
parameters ( R ,  h ) are given by 

(2.3) 



3. Determination of the Motion Parameters 
Suppose the camera is moved in the scene. The posi- 

tion and orientation of the X'YtZ'-coordinate system 
after the motion relative to the XYZ-coordinate system 
before the motion are specified so that the X'YtZ'- 
coordinate system is obtained by first rotating the XYZ- 
coordinate sygem around its origin 0 by -R and-then 
translating it h ,  where the components of R and h are 
defined with respect to the XYZ-coordinate system. We 
call ( R ,  h ) the motion parameters (Fig. 3). Then, we 
obtain the following result (we omit the proof). 

Proposition 2. If the pose parameters are {R,  h ) and 
(R', h ' ]  before and- after the motion, respectively, the 
motion parameters (R , h ) are given by 

I?=R'R', I;=~'(h'-h 1. (3.1) 

4. Determination of the Absolute Depth 
Assuming that vectors e l ,  e2, eg. and rn, have 

already been obtained, consider-the absolute distance ro 
of the scene coordinate origin 0 from the-vjewpoint 0. 
Suppose we observe 2 point Q on the XY-plane, and 
suppo_se the distance OQ from the scene coordinate on- 
gin 0 is known (Fig. 2). Let rn be the unit vector 
starting from the viewpoint o an8 pointing toward Q 
(we call this vector the N-vector of point Q). In the fol- 
lowing, (a ,  b )  designates the inner product of vectors a 
and b , and Ila 11 designates the norm of vector a. 

Proposition 3. The absolute distance ro of the scene 
coordinate origin 0 from the viewpoint 0 is given by 

Proof. If we put r~ = OQ, we have 
4 + 
OQ =02 -00 =rQ rnQ -ro rn, . 

;r) 

(4.2) 

Since point Q is on the w-plane, vector OQ is orthog- 
onal to e3. Hence, 

-6 

(OQ ,e3)=rQ (mQ9 e3)-ro (mo, e3)=0. (4.3) 
Eliminating r~ from eqns (4.2) and (4.3), we have 

from which we obtain eqn (4.1). 

5. N-vectors of Points and Lines 
Given a point P in the scene, we call the unit vector 

m starting from the viewpoint 0 and pointing toward P 
the N-vector of point P .  Evidently, if (a ,  b )  are the 
image coordinates of point P (Fig. 4), its N-vector rn is 
given by5) 

(5.1) 

where N[a] = alllall designates the normalization of 
vector a into a unit vector. 

Given a line I in the scene, we define its N-vector as 
the unit vector n normal to the plane passing via the 
viewpoint 0 and line 1 (Fig. 4). I t  is easily confirmed 

Fig. 3 Motion paramctcrs of thc two cameras. 

Fig. 4 The N-vectors of a point and a line. 

that if the projection image of line 1 is Ax + By + C = 
0, its N-vector n is given by5) . . 

where the sign is arbitrarily chosen. 

Proposition 4. The N-vector rn of the intersection P of 
two lines 1 and l2  on the image plane is given by 

rndN[n  ]xn2], (5.3) 

where n l  and n2  are the N-vectors of the lines I I and 12, 
respectively, and the sign is chosen so that the Z com- 
ponent becomes positive. 

Proof. It is easy to see from Fig. 4 that a point whose 
N-vector is m is on a line whose N-vector is n on the 
image plane if and only if (rn, n )  = 0. Hence, if point 
P is on both lines I I  and 12. N-vector rn must be 
orthogonal to both n and n2. 

Lines which meet at a common intersection on the 
image plane are said to be concurrent. If lines are 
detected by image processing, error is inevitable, and 
lines which are supposed to be concurrent may not be 
concurrent. 

Since the common intersection may not be found 
within the image frame (it is located at infinity if the 
lines happen to be parallel on the image plane), the fol- 
lowing procedure is most reasonable for estimating the 
common intersection of not necessarily concurrent lines 
(Fig. s) .~) 

Procedure 1. Let n ,, ..., n~ be the N-vectors of not 
necessarily concurrent lines. The N-vector rn of their 
common intersection is estimated by the unit eigenvector 
of the moment matrix 



for the minimum eigenvalue, where W ,  is an appropriate 
weight for the a-th line. The sign is chosen so that the 
Z component becomes positive. 

Derivation. If all the lines exactly pass through a point 
whose N-vector is m ,  we have ( m ,  n,) = 0, a = 1, ..., 
N (Fig. 4). Hence, it is reasonable to determine m by 
minimizing gl w,(m, n,)'. In terms of the moment 
matrix N of eqn (5.4), this is rewritten as (m, Nm), 
which is minimized under the constraint llmll = 1, as is 
well known, by the unit eigenvector of N for the 
minimum eigenvalue. 

In order to apply Proposition 4 and Procedure 1, the 
true value of the focal length f is not necessary: An 
arbitrary value of the focal length f can be used for 
computing N-vectors. If the value of the focal length f 
is altered, it is easy to confirm that all N-vectors are 
altered as follows (Fig. 6): 

Proposition 5. If m = (m 1, m2, m3)T is the N-vector of 
a point and n = (n l, n2, n31T is the N-vector of a line 
with respect to focal length f , their N-vectors m', n ' 
with respect to another focal length f ' are respectively 
given by 

6. Determination of the Focal Length 
Lines parallel in the scene, when projected onto the 

image plane, meet at a common point called the vanish- 
ing point. The following is fundamental (Fig. 7)?) 

Proposition 6. The N-vector of the vanishing point of a 
line in the scene indicates its 3-D orientation. 

From this, we obtain the following procedure to com- 
pute the focal length f .  

Procedure 2. 
1. Take an image of two mutually orthogonal sets of 

parallel lines in the scene. 
2. Assuming a tentative value f̂  of the focal length, 

compute the N-vectors m = (ml, m2, m31T and m' = 
(ml', m2', m3')T of the vanishing points of these lines 
by Procedure 1 .  

3. The true focal length f is given by 

Derivation. If m = (ml, m2, m31T and m' = 
(m 1', mz', m3')l' are the N-vectors pf the vanishing 
points with respect to focal length f , their N-vectors 
with respect to the true focal length f are respectively 
given, according to Proposition 5, by 

According to Proposition 6, they indicate the 3D orienta- 
tions of the two sets of parallel lines orthogonal to each 

Fig. 5 Estimation of the common intersection. 

Fig. 6 The focal lcngth f and N-vcctors. 

Fig. 7 The vanishing point of a line in the scene. 

other. Hence, they must be orthogonal to each other, 
i.e., 

from which follows eqn (6.1). 

7. Procedure of Camera Calibration 
Now, we describe a camera calibration procedure 

using a calibration board on which the square grid pat- 
tern of Fig. 8 is drawn. 

The scene fFz-coordinate system is defined by idell- 
tifying point P 9  with the origin 0 and defining the X -  
and Y-axes by e l  = P $ ~  and e 2  = p9?? The sides of 
the f ~ u r  squares are all regarded as h a v q  unit length. 
The Z-axis is perpendicular to both the X -  and Y-axes 
(hence e 3  = elxe2). Then, we obtain the following pro- 
cedure. 

Procedure 3. 
1. Detect line segments in the calibration pattern 

image (say, by the Hough transform or by manual 
specification though an interactive interface). 

2. Fit lines to the detected line segments by the least- 
squares method (Fig. 9). and compute the N-vectors 
of the ^fitted lines with respect a temporary focal 
length f . 

3. Compute the N-vectors of points P 1 ,  ..., P9 with 



respect the temporary focal length f by Proposition 
4. 
Compute the N-vector m  of the vanishing point of 
lines P  1P2P 3,  P a P 9 P 4 ,  P7P6P5  and the N-vector 
m' of the vanishing point of lines P 7 P a P , ,  
P6P9P2 ,  P 5 f 4 P 3  with respect to the temporary 
focal length f by Procedure 1 .  
Compute the true focal length f  by Procedure 2. 
Convert the N-vectors m  and m' of the vanishing 
points into the N-vectors with respect to the true f 
by Proposition 5, choosing their signs so that 

( m  , m  ,-m a)>O, ( m  ', m 2-m ,)>O, (7.1) 
where m 2 ,  m 4 ,  m6.  m a  are the N-vectors (with 
respect to the true f )  of points P 2 ,  P 4 ,  P6 .  P a ,  
respectively. 
Compute e l  and e2  by 

This process forces vectors m  and m' to be orthog- 
onal (Fig. 10) in case they are not (due to nose, 
etc.). 

8. Compute 

and let the unit vector mo be the N-vector (with 
respect to the true f )  of point P9.  

9. Compute the absolute distance ro by Proposition 3, 
in which we take the reference point Q to be each 
of P 1 ,  ..., P a  with the knowledge that 

P ~ ~ = P ~ P ~ = P , P , = P , P , = ~ ,  

p f l ~ P , P  4=P9P6=P9P8=1, (7.4) 

and average the results. 
10. Compute the pose parameters ( R ,  h ) by Proposi- 

tion 1. 

8. Concluding Remarks 
We have presented a scheme of camera calibration 

from images. We have shown that a consistent treat- 
ment is possible if all points and lines are represented by 
unit vectors, which we called "N-vectors". 

The present scheme is very easy to implement and 
applicable to self-sensing of the locations of mobile 
robots as well as calibration of the positions of the two 
cameras for stereo systems. 
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