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ABSTRACT 

This paper describes work done as part of the Oxford 
AGV (Autonomous Guided Vehicle) project [2] towards 
recognition of classes of objects to  be encountered in a 
factory environment. \Ye address the problem of recog- 
nising an object from range-data observations as an in- 
stance of a parametric model class, and determining the 
values of the class parameters for that  instance of the  
model, and the pose of the object. We represent an ob- 
ject class as a map from an underlying shape, a set of 
parameters, and some constraints on these parameters, 
to  an instance of the class. A search of the interpretation 
tree is combined with a constraint network to determine 
the legal interpretations and parameter values using ob- 
servations on a instance of the class. \Ire demonstrate 
the feasibility of this approach using polyhedral mod- 
els and simple range-image features (position, surface 
normal observations). 

INTRODUCTION 

This paper addresses the problem of recognising an ob- 
ject from range-data observations as  an instance of a 
parametric model class, and determining the values of 
the class parameters for that  instance of the model, and 
the pose (by this we mean the 6 positional degrees of 
freedom) of the object. 

The  literature covering the problem of object recog- 
nition from either 3D (range) or 2D (intensity) da ta  is 
extensive. Landmark work in this field includes [I, 8,  
5, 91. Generally such systems represent an object as a 
set of geometric features which are matched to features 
in an image. The  matching rigidly enforces geometric 
constraints between features in order to  reduce the size 
of the search space, which is inherently large. Unfortu- 
nately this results in separate models for objects which 
humans would typically classify as  being of the same 
type. Similarly, objects with parts which move relative 
to  one another are not easily represented in these sys- 
tems. These difficulties mean that there has been much 
less research into recognition of parametrised models. 
Major work in this field includes (3, 71. 

Our work bears resemblance to  Grirnson's extension 
( to  simple parametrisations of models [7]) of his earlier 
work with Lozano-PCrez [8] which is based 011 searching 
and pruning an interpretation tree using geometric con- 
straints. However our system - which combines an inter- 
pretation tree search with a constraint network ha.sed on 
the ideas of Fisher and Orr [GI - provides a more general 
frameworli for parameter determination. 

Like Grimson and many others, we use a data-driven 
search of a.n interpretation tree as the basis for the match 
between the observed data and the model. Reference- 
frame-independent, scalar n~easurements can be derivecl 
from pairs of observed features; henceforth these will 
be called image-measurements. Matching proceeds Ily 
checking each new assignment of an observed feature to  
a model feature for consistency with the inodel and Jrith 
the previous assignments in the current interpretation. 
Two assignments pi, + fil (observed feature i l  to  model 
feature jl) and pi, + fj, are coizsisteizt if the image-- 
measurements derived from pi, and pi, lie within the 
range of possible values derived from the model features 

fjt and fjz. 
In [8] the bouilds for each image-measurenlent are 

precomputed and stored in look-up tables for efficient 
access. For pa,rametrised models, offline computation 
of the  bounds is not possible because the bounds de- 
pend on the  values of the parameters. I-Iowever we can 
choose t o  use image-measurements which are related to  
the parameters in well defined ways. \Ire use a con- 
straint network to represent the relationships between 
bounds on image-measurements and model parameters, 
and look-up tables which point to  varial~les in the net- 
worli (replacing the hounds table). 

The  following two sections show ho\r such a network 
is defined and used to control the search of the interpre- 
tation tree and to determine object parameters. 

REPRESENTATION 

Our approach models an object using: 

a bounda.ry representation (the faces of the ob- 
ject); 

a set of parameters (not necessarily independent): 

a set of constraints on the parameters. 



As a simple example, consider a c1rrs.s of pyramids. This 
might be  represented by the five faces, the parameter r 
(the ratio of its height to  its base), and the constraint 
that  the height be less than two times the base but 
greater than half the base; ie 0.5 < r 5 2.0. 

The constraints and the boundary model define a 
class of object over the parameter set. Our aim is to  
recover the actual values (or ranges of possible values) 
of the parameters for an instance of a class in a scene, 
assuming no a priori knowledge about its pose (nor in- 
deed, the extent to  which it is occluded). 

A sup/inf constraint network of the type described 
in (61 is compiled from the  model's constraint set, in 
which each node is one of tlie following: 

a constant; 

a variable: 

an operator which performs a given operation on 
its input(s) (currently +, -, *, /, sin, cos, tan and 
their inverses and min and max are supported in 
our implementation). 

Each variable V in the network has an associated in- 
terval (denoted by B[V]) giving the current upper and 
lower bounds of the variable. Each model parameter 
is a variable in the network. In addition, each bound 
for the image-measurements is a variable in the net- 
work. Although this could result in very large numbers 

of variables in the network, in practice many image-- 
measurements are bounded by the same variables (which 
are sometimes the parameters themselves). References 
to the network variables corresponding to the image-- 
measurement bounds are precomputed and stored in 
look-up tables. 

The  network is constructed so that  the constraints 
and relationships between the parameters, and the rela- 
tionships between the image-measurement bounds and 
parameters are satisfied by the network's topology. The 
topology is static for a given model (i.e. object class) 
and therefore may be  precompiled. 

Figure 1 shows an example of how the measurement 
of the angle between one of the side faces and the bot- 
to111 face can be connected to  the parameter I .  of the 
pyramid so that  observed data can propagate tlirough 
the network. 

ALGORITHM 

The interpretation tree is a dynamic structure, grow- 
ing as consistent assignments are added and shrinking if 
they are found to be inconsistent. Tlie variables in the 
(static topology) network hold the current estimates of 
the parameter values and image-measurement bounds 
for the current s ta te  of the interpretation tree. The 
s tate  of tlie network is therefore used to guide the tree 
search. Consistency of image-measurement Ad with the 
assignments pil -+ fj, and pi, -+ f,, is guaranteed by 

Figure 1: Pyramid example: (a) a pyramid with ob- 
servations n l  and n2 on a side and on the base re- 
spectively; (b)  network connections for propagation of 
image-measurements to  model parameters. The squares 
represent variable nodes, the circles represent operation 
and constant nodes. 

enforcing 
inf B[Q] < hl 5 sup B[V,] 

where Q and Vu are network variables (not necessar- 
ily the  same) corresponding t o  upper and lower bounds 
respectively on image-measurement hI  and are deter- 
mined using the look-up tables (see examples 1 and 2). 
In practice an interval around Af, I(h-I) is considered 
because M can only be determined up  t o  certain error 
limits; the test above then becomes an intersection test. 

If a n  assignment is consistent then the image-meas- 
urements derived from it are used to update the network: 

sup B [ v ]  = min{sup B [ v ] ,  sup I(A-I)) 

inf B[Vu] = max{inf B[V,], inf I(A1)) 

Thus progressive refinements of the legal bounds of the 
image-measurements are performed; the measurements 
are used as  updates on the current state of the net- 
work and allowed to propagate, refining other bounds 
and possibly highlighting an inconsistency in the cur- 
rent interpretation. 

In order to  maintain integrity in the network while 
backtracking during the tree search (caused by an incon- 
sistency), each variable has a local stack associated with 
it. When a potential match is deemed consistent, each 
variable saves its current value on its stack. In the event 
that the interpretation turns out to  be inconsistent, the 
old network state can be  popped from the stack. 

Our implementation currently considers position, 
surface normal features, denoted by pi = (v;, ni) for the 
i th observed feauture. Tlie image-measurements derived 
from these which we use are: 

M1 E arccos nil mi,; 

Two examples based on the object shown in figure 2 
illustrate the use of the measurements. 

Example 1: Measurement Ad1 is consistent with 
the match p, to  face 1 and p2 to face 9 if 



Figure 2: This object can be parametrised by the vari- 
ables shown. Surfaces are marked with numbers. 

where V is a variable connected in the network so that 
t = x - V. The  look-up table entries for for the upper 
and lower bounds on the angle between faces 1 and 9 
are both pointers to  the variable V. 

Example 2: Measurement M 2  is consistent with 
the match pl to  face 2 and p2 to face 3 if 

sup I((v2 - vl).nl) 2 0 

and inf I ((vz - .rll).nl) < sup B [ d z ]  

where the look-up table entry for the upper bound on 
the distance of a point on face 3 to  the plane defined by 
face 2 is a pointer to  the variable dz The first condition 
is a form of sidedness; it says that all points on face 3 lie 
on the positive side of the plane defined by face 2. The 
second condition arises from the fact that the length of 
face 3 is d2.  

Once a complete legal interpretation has been found, 
the objcct pose (i.e. transformation from sensor to  mod- 

el coordinate frame) can be calculated. The  state of the 
network determines the ol~ject  parameter values. These 
are substituted into the generic model to  give a model 
of the class instance, then the method described by [8] 
is used to estimate the pose. Occasionally the bounds 
on some parameters ]nay not be sufficiently tight to  es- 
timate part of the transformation accurately. The  addi- 
tion of more observed data  will, in general. result in a 
refinement of the 1,ounds. 

Figure 3: A sample object: (a )  a parametrisation; (11) 
a computer generated range-image (lighter corresponds 
to  closer). 

The rotation is given as a rotation direction vector, 
and an angle in radians. The true values are shown in 
parentheses. The translation is not given; some of the 
parameter bounds have not been narrowed sufficiently 
to  give an accurate estimate. This is to  be expected 
since a minimum of observed data  has been used for the 
experiment. 

I Interpretation 1 I Interpretation 2 ] 
w 1 
w2 
w3 
h 1 
h2 
h3 
d l  
d2 
d3  
d4 
d5 
d6 
Rotation 
vector 

Anale 

RESULTS 

Results for the o l~ j rc t  shown in figure 3 are given in this 
section. Surface normals are estimated using a least-- 
squaws fit from the range-image a t  the points indicated. 
Two interpretations are found by the algorithm, corre- 
sponding to the symmetry of the ol~ject.  

Table 1 shows the pose and parameter ranges de- 
termined. The  bounds on the parameters are indicated 
by the outer two small vertical lines; the interval be- 
tween the lines is the set of parameter values consistent 
with the ohserved data. The small vertical clash in be- 
tween the bounds is the actual value of the parameter for 
the instance in the range-image; in each case the true 
value lies between the bounds computed by the algo- 
rithm. Some of the intervals have been narrowed to the 
point where the parameter is almost exactly determined 
(e.g. h2 and w3). 

Table 1: Results for ol~jcct in figure 3 

On a Sun4 workstation the entire algorithm, includ- 
ing verification that  the matched faces are visible in t h e  
final pose estimate, required seven seconds. 

DISCUSSION AND CONCLUSIONS 

A scheme for the recognition of object classes has I~een 
presented which makes use of a network of constrai~lts to 
guide matching and determine model parameters. The  
feasibility of the scheme has been demonst~atcd using 
position, surface normal data. 

We have not yet attempted co~nl~ le te  automation of 
the model generation. Specifically. the precomputation 
of look-up tables is currently performed manually. This 
is time consuming and error-prone. RIost of the nec- 
essary techniques for automatic symbolic manipulation 
have already been developed [3, 41, so this shoultl pro- 
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This should result in tighter constraints and fewer am- 
biguities. 

Our algorithm demonstrates good performance on 
an average speed machine (Sun4). However the current 
program is grossly inefficient in its network evaluation. 
Tests have shown that  the network computation would 
be reduced by 80% or more using a data-flow imple- 
mentation. We expect to  port the network software to  
transputers where a parallel data-flow network will be 
the natural implementation. 

Currently we assume all observed data  t o  be from 
the object; i.e. a priori segmentation. This problem is 
overcome by [8] using a null face; an assignment which 
is always consistent. This could be incorporated into 
our work without difficulty, but has a number of disad- 
vantages. A null face assignment is interpreted as an 
observation which does not correspond to any part of 
the model under consideration. Its use precludes neg- 
ative constraints of the type "this observation was not 
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Figure 4: Pallets with differing numbers of surfaces. 




