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ABSTRACT 
An autonomous mobile robot must be able to combine un- 

certain sensory information with prior knowledge of the world. 
Moreover, these operations have to be performed fast enough for 
the robot to be able to react to the changes in the world. This pa- 
per presents a model-driven system for a real-time indoor mobile 
robot. As the robot is constantly in motion. information from 
an Environment Model is used to anticipate information-rich 
features and to direct selective sensing. This model-based ex- 
pectation helps the system overcome problems of slow sensing 
rate by requesting only that information which is immediately 
necessary. Direrent types of features activate different sensing 
modes. Uncertain sensor information is combined with prior 
World Model knowledge to reduce uncertainty in the model. 
We present a hall-following robot, based on these principles, 
which exhibits real-time navigation performance. It does this 
despite primitive and relatively slow sensing. As such a sys- 
tem is dcpendcnt on an existing model, we have also examined 
ways to create similar models from the sensory information. We 
experimented with a neural network which is trained by back- 
propagation to identify the desired features in the corridor. A 
simulation of this system is run off-line, and preliminary results 
are presented in which a model of a conidor is directly derived 
from sensory information. 

INTRODUCTION 

An autonomous mobile robot must be able to combine un- 
certain sensory information with prior knowledge of the world. 
Moreover, these operations have to be performed fast enough 
for the robot to be able to react to the changes in the world. A 
robot should use a-priori model information to control its sens- 
ing. This can be viewed as a conformation process in which 
the system uses the available model information to minimize 
the perceptual processes, and to extract only that information 
which is needed to verify the existing structures in the model. 
The use of the model will help the system avoid unnecessary 
operations; however, a totally 'model-trusting' system may ex- 
hibit hallucinatory behavior when a mismatch evolves between 
the reality and the model. The system will then try to force in- 
stantiations of model structures even when the structures do not 
exist in reality. To avoid these problems, a system must also 
maintain a constant check on the disparity between expected 
features and actual sensed features. If the disparity is too high. 
the system should adapt by modifying its perception and ac- 
tion strategies, possibly slowing down, and building a model 
directly from sensory information. This strategy will require 
more exhaustive information collection and analysis. and, thus, 
will proceed slower. However, once the information is collected 

for a particular environment, the system can switch back to the 
faster model-based strategy. 

Earlier robot systems such aslq2 approached the problem of 
sensory guided navigation by moving the robot very slowly. 
actually stopping it altogether so it had enough time to analyse 
all the information, to arrive at the correct conclusion, plan 
its path and then only to proceed. This is obviously not a 
desirable solution if the robot is to perform any task in a dynamic 
environment since the temporal sampling rate is too low. 

At the other end of the spectrum, systems capable of real- 
time reaction3, are designed to accommodate this demand by 
reducing the analysis of information to the most simple oper- 
ations performed only on windows from the original data set. 
The problem is that these systems require a precise dynamic 
model of the environment. and of the statistical characteristics 
of corruption in the data. A Kalman filter is used to combine 
new observations with the state of the system. The Kalman filter 
is an iterative least squares approach and thus will not be able 
to handle totally erroneous data. A Kalman filtering approach 
is also used in4, here, analysis of stereo images is uscd to guide 
a robot in a conidor. A real-time obstacle avoidance scheme 
using sonar data is presented in5. Sonar data from successive 
readings is combined to create a 'histogram grid' with 'obstacle 
densities' which is in tern used to successfully control a mo- 
bile platform. Neverlheless, their system does not incorporate 
any a priori information, and does not perform any model-based 
analysis. 

Another approach6 introduces reactive systems with no ap- 
parent cognitive parts. The attractive aspect of these systems is 
the 'subsumption architecture' which provides a framework for 
placing more complex behaviors on top of more primitive ones. 
However, these systems lack information analysis capabilities, 
and behavior is fully hard-wired. The system cannot deal with 
any 'unexpected' situations, nor has it any means for filtering 
out inconsistent data. 

A general-purpose architecture for controlling mobile robots. 
the Task Control Architecture, is presented in7. This work con- 
centrates on the definition of the control mechanisms, but fails to 
introduce a distinction between acquired knowledge and avail- 
able knowledge (see alsos). 

We follow closely the paradigm presented in in which the 
Environment Model is placed at the heart of a system. This 
should allow assimilation of information from various sources 
and over time. 

A representation hierarchy for robust navigation and map- 
ping for large scale terrain is presented in1'. In our system 
we implement the Sensorimotor, the Topological and the Metric 
levels discussed there. 

We present a system which combines uncertain sensory in- 
formation, a priori world model information, and expectations 



from the previous environment model state, to generate a new 
consensus state. The state of the environment model is used 
to control the robot's motors, and to guide a selective sensing 
mode. 

A system which is entirely dependent on a-priori informa- 
tion for its modcl construction is prune to problems of mis- 
interpretations of sensory information. Such misinterpretations 
may result from the dynamic nature of an environment, tempo- 
rary sensor failure or bad performance, and other unpredictable 
but expectcd situations. An autonomous system should thus 
have the means to protect itself by being able to question the 
accuracy of its model and build a new one if necessary. To 
overcome the problcms of a totally 'modcl-trusting' system we 
have cxperimcntcd with a neural network which is trained by 
back-propagation to identify desired features in the environment. 
The network uses a spccial I-step fccdback of its previous out- 
put state which providcs the system with first ordcr dynamic 
continuity, and improves its pcrformance. A simulation of this 
systcm is run off-line, and preliminary results in which a model 
of a corridor is built strictly based on sensory information are 
prcsentcd. 

ENVIRONMENTIWORLD MODELS 

An intelligent autonomous system working in an unstruc- 
tured, dynamic environment requires models for navigation, 
planning, object recognition, and internal process control. The 
model uscd by such an autonomous agent is usually referred 
to as the World Modcl (WM). The WM includes information 
about the work space, objects, properties of objects, relation- 
ships among them, evcnts that can occur, and any other relevant 
informationg. 

We distinguish between the WM which contains relatively 
fixed information and the Environmcnt Model (EM) which con- 
tains more detailed, dynamic, and explicitly task-oricnted infor- 
mation. The WM and EM have similarities to long-term and 
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Figure 1: Information Flow Diagram 

short-term mcmorics in many systems11, though there are some 
fundamental diffcrcnces. The most important difference is the 
explicit attempt to capture 'locality' (temporal, spatial, and con- 
textual) of information in the EM. 

Our system demonstrates these concepts and some of the in- 
teractions between the models and the sensory information (see 
figure 1). A global data base - the World Model - represents all 
the information known a priori about the environment. In our 

test case (hall-following) this model is a floor plan of the hall- 
way showing the exact position of each door and other openings 
along both walls. It includes the name of the room associated 
with each door. The environment modcl, on the other hand, 
contains dynamic information such as the robot's position and 
orientation, position of landmarks relative to the robot, state of 
objects in the environment etc. The environment model is cre- 
ated from a combination of scnsory information and data from 
the World Model. 

Finally, the information in the Environment Model and that 
from the World Model are combined to create the Expectation. 
The Expcctation can be defincd in terms of Environmcnt Modcl 
structures (next position, orientation ctc), or in tcrms of scnsory 
data (actual expected readings from sensors). The Expcctation 
is used to control the sensing direction and modc. 

MODEL DRIVEN APPROACH 

An autonomous agent interacting dynamically with the cn- 
vironment reacts to the sensed information and to changes in its 
internal model. The mechanisms that control these reactions can 
be dividcd into two main categories: sequential mechanisms, or 
event drivcn mechanisms. Scqucntial mechanisms follow a pre- 
determined scqucnce of opcrations, whereas the evcnt driven 
mechanisms will vary according to the changing events. The 
disadvantages of scqucntial mechanisms lie with their inade- 
quacy to deal with general cases. Their advantage, however, is 
that bounds on the computation time can be easily derived. This 
is especially critical for meeting completion time requirements 
in real-time systems. 

Event drivcn mechanisms can be further dividcd into two 
sub-categories: data drivcn, and modcl drivcn. In the data 
driven mechanisms sensory information is used to control the 
algorithms, in the model driven approach model information is 
used. The modcl driven mechanism uses processed information. 
thus takes into account the uncenainty in sensory information, 
previous data. and expectations. Also, in these mechanisms, the 
complexity of the operation is proportional to the complexity of 
the model, and not to that of the sensed data. Roth-Tabak and 
Jain12 have demonstrated a model driven approach for informa- 
tion assimilation and modcl building using multiple views. This 
allows their algorithm to be fully parallelizable. Data driven 
mechanisms, on the other hand, can be used for reflexive bchav- 
ior, when immediate reaction is nccessary to avoid potentially 
dangernus situations, in which case information is extracted di- 
rectly from the sensors to save time. The danger is that the 
system loses contact with the real environment bccause the ex- 
tensive use of data driven mechanisms can generate 'confusions' 
due to bad data or wrong interpretation. 

Our system combines all three mechanisms : 

A sequence of operations mainly sensing, integrating the 
information, and reacting, guarantees that although the 
robot is constantly in motion, it is also constantly 'in 
touch' with the environment. 

l Simple input data analysis is performed repeatedly and 
guarantces that the robot is keeping away from 'troubles', 
namely avoiding obstacles, and kecping "on track" as it 
moves down the hall. 

l Expectations are used to direct the scnsors. This is a cen- 
tral mechanism since it mediates the flow of information 
back into the modcl, which is used to establish the updated 
environment modcl values. This is a focus of attention 



mechanism which helps the system to ignore large pieces 
of potentially distracting information and concentrate its 
full analysis power on the critical information. It is the 
key to the real-time capability of our system. 

Assimilatine Uncertain Information 

Information from the sensors is assimilated into the environ- 
ment modcl on two different axes: 1. information from different 
sensors given at the same time, and 2. assimilation over time. 
Sensory information is never fully reliable, however, and one 
has to to be careful when computing average values, to filter 
out unreawnable values. In our system this is handled by defin- 
ing flexible uncertainty ranges for the various variables in the 
environment model, and by generating anticipation values for 
the sensory readings based on time lapses and dead-reckoning 
between the sensing intervals. 

The information in the environment model is represented as 
intervals of uncertainty. For example, the robot's longitude po- 
sition in the hall is given as an interval of size proportional to the 
uncertainty of the information. As the robot moves and collects 
more sensory readings, these uncertainty ranges are updated us- 
ing two basic schemes: local updating, and global updating. 

In the local updating scheme different sensory information 
contributes to the updating process. As each data modality car- 
ries a different e m r  margin, a new uncertainty range (or set of 
ranges) is computed for each by taking into consideration the 
largest e m r  margins. The final range is the intersection of the 
'acceptable' readings from all the modalities. 

As the local updating is based on the previous instantiated 
model, although we are trying to use worst case measures, ad- 
ditive errors can creep into the model and confuse the system 

particularly in cases where the environment consists of repeti- 
tive structures. The global updating is introduced to avoid this 
problem. In this scheme a global uncertainty range is also kept. 
It is computed relative to an earlier position for which some un- 
certainty may exist, but for which the true value is known to be 
within the uncertainty range. The global uncertainty is updated 
using sensing modalities that can introduce only 'noisy' results 
but no outliers. 

Expectation in our system is used not only to drive the sen- 
sors, but also to filter out improbable ('non acceptable') read- 
ings. The system uses the previous model and its knowledge 
of the dynamics, the elapsed time or dead-reckoning, and the 
World model to anticipate particular readings. The more read- 
ings the system accepts the more reliable the model becomes 
and the smaller the envelop of acceptable readings becomes. If 
the actual readings are outside of an acceptable envelop they 
are discarded, and the envelop margins grow. 

EXPERIMENTAL RESULTS - USING A MODEL 

Using the above guidelines a simple robot (Heathkit 2000) 
can move down a hall at a continuous pace while constantly 
collecting measurements correcting its orientation, determining 
its position in the hall, and recognizing special landmarks (doors 
and openings). 

The world model which defines the hallway consists of a 
combination of metric and non-metric information. The model 
represents 'places' such as opcnings and doors as intervals. 
These places determine the sensing mode to be used for properly 
following the hall. In addition, landmarks such as door begin- 
nings or endings are represented metrically. This information is 
used to correct the dead-reckoning and detect the actual position 

of the robot in the hallway (which is defined as an interval of 
size relative to the certainty of the information). 

The environment model consists of the section of the hall- 
way in the vicinity of the robot (properly oriented), and the 
robot's state. The robot's state consists of its currcnt posi- 
tion (longitude and latitude uncertainty ranges and closest land- 
marks), current orientation, the latest filtered sensor readings, 
other parameters representing the system's intcrprctations of its 
latest sensory information, and sensing mode (based on the sur- 
rounding features). 

Due to the inherent communication delays in the given sys- 
tem, and to our initial requirement of real-time operation, the 
sensing control has to be very selective. The system uses two 
sensing modes, in one it is trying to determine its latitude posi- 
tion and orientation in the hall (which is crucial for survival in 
the 'hall-jungle'), in the next the systcm is trying to recognize 
detectable features in the environment and match them to the 
model (see figure 2). 

Our current system is able to navigate itself successfully in 
the given conidor using three levels of action: 

Reactive - the system fires the base sonar sensor con- 
stantly, and whenever the range is too small it stops and 
waits for the obstacle to be moved. 

Corrective - Orientation and distance from the walls are 
kept in a band of values which is large enough to let it 
move uninterrupted but is small enough to dcal with the 
potential movements tctwcen the measurcment cycles. 

Planned - Selective sensor readings arc taken only from 
desired orientation, and at positions whcre, from the world 
and environment models, they are expected to yield useful 
results. 
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Figure 2: Layout for hall-following experiment 

The robot ignores uncxpccted readings, such as created by 
people moving by it, so it is ablc to dcal with this type of dy- 
namics. The robot also recognizes hall features such as openings 
and doors, and is able to identify closed and open doors. We 
have also demonstrated the generality of the model and the sys- 
tem by picking a different corridor in the building, and simply 
loading the new world model of this othcr corridor with no ad- 
ditional changes to the system. The systcm was ablc to perform 
successfully. 



GENERATING A MODEL FROM SENSORY DATA 

The details of the actual techniques used to generate the 
model are beyond the scope of this paper. We shall just briefly 
outline the means and present preliminary results. The aim of 
this project was to investigate the use of a neural network to 
recognize features of interest in a corridor without any a priori 
knowledge (or model) of the environment. Input data consisted 
of local sonar and light measurements, and a trained neural net 
is used to identify the various features of interest in the vicinity 
of the robot. The system can then use this information to guide 
the robot along the corridor, and to build a model of the corridor. 
This information can be assimilated with previously available 
informalion, or be used to construct the model in a strictly data- 
based mode. 

Figure 3 presents the results graphically. The actual corridor 
walls and doors are represented as the 3-D shaded structures. 
The model constructed by the neural net is shown as the dark 
thick lines parallel to the walls. Doors are represented as line 
indentations and open-doors as jagged indentations. 

Except for a single gross error where the network hypoth- 
esized a door which was not there, the network performed ex- 
tremely well: All the doors, openings and walls (even the sin- 
gle open door) were correctly identified. There was a varying 
amount of positional error for the identified features shown in 
the figure, but it was in the order of magnitude of the robot's 
single 'step size'. The figure should provide a reasonable idea 
of the amount of positional e m r ,  as it is scaled to represent 
the proportions correctly - except for the width of the corridor 
which was increased to make the figure intelligible. To get some 
idea of the actual dimensions, a door in reality is 35 inches wide. 

Actual Corridor 

Model created by the 
trained Neural Network 
from sensor data 

ha* prhU MOT: 

h NN model 

Figure 3: A corridor model generated by the Neural Net 

CONCLUSION 

In the presented method, we have created a simple world 
model representing a hallway using a combination of metric 
and qualitative information. We have demonstrated our capa- 
bility of dealing with uncertainty in sensor data and robot posi- 
tion by driving the system using an environment model, and by 
generating anticipation for both updated values of environment 
model variables such as position and for actual sensor readings. 
Despite the slow communication between the off-board process 

and the controllers on the robot, the slow reaction of the on- 
board controllers through a BASIC interpreter, the slow sensing 
capability, the infamous reliability of the sonar sensors, and the 
sparse amount of available information, our system performs 
successfully in real-time. 

The scheme demonstrated in this simple system can be ex- 
tended to more complex systems and situations. More com- 
plex sensing devices will increase the potential 'vocabulary' the 
wodd model can handle since more features are detectable and 
possibly with greater accuracy. 

We have also presented preliminary results of generating 
a model directly from sensory information. A combination of 
such a capability will render a system much more robust as it 
will be not only able to use a priori information, but also ques- 
tion and verify it, and produce a similar model for unknown 
environments. 
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