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ABSTRACT 
An cvaluation is made of hardware and software rcquirc- 

mcnts to support window-, crinkle- and pyramid-mapping on a 
lincar and a squarc proccssor array. The diffcrcnt mapping strat- 
cgics also lcad to diffcrcnt algorithms to solvc imagc proccssing 
problcms. Thrcc imagc proccssing problems servc as an cxarnplc 
of thc algorithmic diffcrcnccs causcd by the mapping mcthods. 
For thc invcstigatcd 2D proccssor array, thc pyramid mapping 
givcs thc fastcst rcsults. 

1 INTRODUCTION 
lmagc proccssing tasks can bc calculated by using a number 

of Processing Elcmcnts (PEs) working in parallcl. Thc question 
ariscs how an irnagc can most cfficicntly bc mappcd on available 
PEs. In Scction 2 diffcrcnt mapping mcthods arc discusscd. Im- 
plcmcntation for the case of a CLIP4 proccssor array is described 
in Scction 3. In Scction 4 the mapping n~cthods arc comparcd for 
thrcc imagc proccssing problcms. Thc results of this comparison 
arc discusscd in Scction 5. 

2 THE MAPPING PROBLEM 
2.1 Mapping theory 

Solutions to the problem of mapping an N*N image on P 
processors may result in different architectures: ways in which 
the P (PEs) are connectcd and cooperate. 

Principally differing architectures are: the Linear Processor 
Array, the Square Proccssor array, the PipeLine, and the PyRa- 
mid (denoted as LPA, SPA, PL and PR rcspectivcly). Although 
the mapping problem leads to different architectures, the same 
PEs may be used (as argued in [61). An LPA has P PEs config- 
ured in a line. Evcry PE will be able to have immediate access to 
3-5 valucs: onc of the valucs in its own mcmory (thrce for thc 
AIS-5000; see [18]),one of its left, andone of its right ncighbour. 

An SPA is an array of PEs connccted in a 2D grid in which 
each proccssor has acccss to the output valucs of its 'direct' 
ncighbours. Each PE contains its own local memory to store the 
irnagc pixcl value corresponding to its position in the array. With 
a full-array, thc image is as large as the SPA. Due to the large 
number of PEs needed for increasing imagc sizcs (up to 
4096*4096 for satellite images), this seems suited only for opti- 
cal arrays such as the DOCIP [lo]. Available arrays havc sizes 
from 8*8 to 128*128. 

The mapping types of imagc points on PEs that can be im- 
plemented on an LPA and SPA arc the following: 

Full: For the LPA each of the P PEs processes one column. 
For the SPA cach of the 2/7;. 2/7; PEs proccsscs one pixel of the 
image. 

Crinkle-wke: For the LPA every PE is assigned to r N / P 1  
contiguous pixcls of the row. The row is thcn proccsscd in at least 
r N / P l  proccssing stcps. This method is, for example, uscd by 
the PICAP3 1131. For the SPA a sampled vcrsion of the image - 
with as many pixels as there arc PEs - is mapped on the PEs of 
the PA. This method is uscd by the GRID [14]. 

Window-wise: In an LPA (e.g. AIS-5000 [I@) the first P 
pixels of a row are proccsscd with the P PEs, thcn the ncxt P pix- 

els etc. until the row is complctcly proccsscd. This also takes at 
least r N / P l  proccssing stcps. For an SPA(c.g. CLIP4 (51) thc 
imagc is dividcd in windows (scans) of the SPA sizc. 

Helicoi'dal: This mapping -only for LPAs - is similar to win- 
dow-wisc mapping, but differs in thc assignmenl of imagc points 
to PEs, that shift one point for every ncw row (scc Figurc 1). This 
mapping makcs it possiblc to scan thc array horizontally as wcll 
as vertically across thc imagc. It is uscd in the SYMPATI-2 [I 1 j. 

Pyramid: This is an cxtcnsion ofcrinklc mapping - but only 
for SPAs - in which images with lcss pixels than PEs arc storcd 
in a subsct of ncighbouring PEs. For example, a pyramid map- 
ping on a 32*32 SPA has six lcvcls containing arrays of sizcs 
1*1,2*2,4*4,8*8,16*16 and 32*32 stackcd above cach othcr. 
The base of thc pyramid is a crinkle wise stored version of the cn- 
rirc image. 

A processor mapping function (PMF) can be uscd to dc- 
scribe which image point is proccsscd by which PE. For the LPA, 
a PMF shows in which PE at position (x) thc imagc point ( i j )  is 
storcd. For the SPAs it shows in which PE at position (xy )  of the 
SPA the imagc point (i j) is storcd. The PMFs for most of the list- 
cd mapping methods arc givcn in Table 1. 

To demonstrate the diffcrcnt PMFs for the LPA and SPA, 
Figure 1 shows how an imagc of sizc 8'8 is storcd in 4 PEs. 

Table I Processor mapping functions 

If an LPA uses crinkle or window mapping, this may involve 
extra overhcad: for crinklc-wisc mapping thc ncighbour valucs 
have to be obtained scrially; for window-wisc mapping the PEs 
which are on the array edge havc to pass through thcir valucs 
from scan to scan (this can bc done without overhcad, as shown 
in the AIS-5000; [Ill]). LPAs which allow parallcl or vcry fast 
access to their ncighbours will be more suitcd for window map- 
ping e.g. SYMPATI-2 [l I]. 

Name 

Crinkle 
Window 
Helico'idal 
Full-size 

Figure 1 Mapping of an 8*8 image on 4 PEs: (a) LPA window- 
wise, (b) LPA crinkle-wise, (c)  LPA helicoi'dal, (d)  SPA window- 

wise and (e) SPA crinkle-wise. 

with: k = N /  ( 3 )  , 2/7; is an intcgcr, and '/' intcgcr div. 

LPA: 

x = i / L N / P J  
x = imod P  
x = (i + j) mod P  
x = i 

SPA: 

(x, y )  = ( i / k ,  j / k )  
(x, y )  = (imod 2/7;, jmod fi) 

(x, Y )  = 



2.2 Window mapping 
An SPA using window mapping divides the image in scans 

with a sizc of (see Figurc Id). Although evcry window 
can bc proccssed individually, hardware or - if there are no such 
facilities - softwarc should provide the values of the ncighbours 
which arc across thc window borders. 

Several methods exist to solve this 'cdg-problem' [2][8]. In 
thc cxpcrimcnts dcscribcd in Scction 3, the Edge Store Scanning 
(ESS) mcthod is used. With ESS, evcry window is processed 
only aficr an cdgc around thc PA is fillcd with the values of the 
pixcls which arc ncighbouring thc window (scc Figure 2). Not 
many PAS arc cquippcd with cdgc hardwarc to do this [8]. 

Figure 2 Edge store scanning. 

Thc ncighbourhood sizc uscd for window scanning opcra- 
tions willbc assumcd - for convcnicncc - not to bc larger than thc 
ncighbourhood sizc available from thc Proccssor Array which is 
uscd. Thcrc is scanning ovcrhcad of at lcast 2.5 to 4 duc to thc 
numbcr of timcs a window is proccsscd [12]. 

Window mapping is cspccially suitcd for SPAS which allow 
parallcl ncighbour acccss c.g. CLIP4 151, BASE 1151, GAPP [4]. 

2.3 Crinkle wise mapping 
An SPA using crinklc mapping storcs samplcd vcrsions of 

thc imagc in thc i m a g  mcmory. An cxamplc of crinklc mapping 
is shown in Figurc le. Thc sampled vcrsions are crcatcd using 
identical sampling frequcncics. However, cach time thc sampling 
start positions diffcr. 

In a crinkle wise stored image, neighbours in the mcmory arc 
not neighbours in the image because samplcd vcrsions of the im- 
age arc storcd in the mcmory (see Figurc lc). Exccuting a ncigh- 
bourhood operation on a crinklc wisc storcd irnagc can not be 
donc by using ncighbourhood connections in an SPA. 

The ovcrhcad with regard to processing a crinklc wisc storcd 
imagc dcpcnds on the number of neighbows that is uscd, bccausc 
neighbour values have to bc gathered one by one. 

If arrays are used which allow parallcl neighbour acccss, this 
facility is of hardly any usc with crinklc mapping. Arrays which 
are dcsigncd for serial ncighbow ncccss arc morc natural to this 
mapping strategy c.g. MPP [I]. The GRID proccssor array is spc- 
cifically designed for crinkle mapping [14]. 

2.4 Pyramid mapping 
Pyramidal mapping is bascd on the pyramidal structurc. A 

processing clemcnt in the intcrior of this pyramid has a local 
ncighbourhood which consists of a father in the level above, 
cight ncighbours at the same level, and four sons in the level be- 
low. This is shown in Figure 3. The original imagc is in the base 
of thc pyramid. The other levels contain imagcs derived from the 
basc. A pyramid supports multi-resolution imagc analysis 131. 

Figure 3 Typicalpyramid architecture 

With pyramidal mapping, a pyramidal data structure is 
mapped into thc imagc memory of a small SPA. The uppcr levels 
of the pyramid havc dimensions which arc smaller than or equal 
to the dimensions of the SPA. Thcrcforc they can bc stored in 
(the uppcr lcft part of) a single mcmory plane in imagc memory. 
Processing thcm in thc SPA is straight forward. The other levels 
arc stored crinklc wisc in image memory, in such a way that a fa- 
thcr and his sons are stored in the mcmory of the samc processing 
clcmcnt. This allows a morc natural up- and downwards proccss- 
ing in the pyramid. In the upper lcvcls, shifts and masks havc to 
be used to proccss up- and downwards in the pyramid. 

Thc imagcs which have to bc proccsscd with a pyramid arc 
square in sizc. The dimensions havc to be powers of two. 

3 PROCESSOR MAPPINGS ON CLIP4 
In this scction wc will dcscribc how mapping mcthods can 

bc implcmcntcd on a spccific SPA: ~ h c  CLIP (Ccllular Logic Im- 
age Proccssor). This Proccssor Array was dcvclopcd at thc Uni- 
vcrsity Collcgc of London. For a full description of it we rcfcr to 
151. Thc Dclft CLIP4 has 64*32 PEs, 2048 additional mcmory 
plancs, and does not posses hardwarc scanning facilitics. 

3.1 Window mapping on the CLIP4 
A softwarc scanning vcrsion of ESS has bccn programmed 

into thc Dcln CLIP4 using C4VM (CLIP4 Virtual Machinc: a 
dcrivativc of C; [7]). Programs which arc writtcn for thc full-sizc 
imagc, can bc run on thc CLIP4 using ESS aftcr rccompilation. 

Whilc proccssing cvcry window with the SPA, a spccial 
softwarc cdgc storagc is crcatcd by or-ring the pixcls which arc 
on the edgcs of the ncighbouring windows (Fiyrc 2a). Thcsc 
cdgcs havc to bc transported from onc sidc of thc array to the oth- 
cr. This is donc by a local ncighbourhood opcration followed by 
a global propagation opcration. 

3.2 Crinkle mapping on the CLIP4 
lmagcs which arc 128*128 or 256*256 pixcls in sizc havc 

becn crinklc wisc storcd in the Dclft CLIP4 imagc mcmory. A 
function has bccn implcmcntcd to process thcsc imagcs. 

An imagc of 128*128 pixcls in sizc, for cxamplc, is storcd 
in cight 64*32 mcrnory plancs. For rcasons of symmctry, blocks 
of 2*2 (instead of 2*4) adjaccnt image pixcls wcrc storcd in thc 
mcmory of thc samc processing element. Thcrcforc, 8 samplcd 
vcrsions of the imagc arc actually storcd (4 of the upper and 4 of 
thc lower half). In fact the imagc is dividcd into two parts which 
arc both crinkle wisc stored. 

Thc function for proccssing thcse imagcs solves thc prob- 
lems which arc dcscribcd in Scction 1.3. However, special attcn- 
tion has to be given to thc artificial cdge in thc middle of thc im- 
ages, which is a rcsult of the fact that the Dclft CLIP4 proccssor 
array is not square. 

The authors measured a worst case ovcrhcad (the avcragc 
proccssing timc pcr scan dividcd by the exccution timc for a sin- 
glc scan imagc) to bc 28.8 (22.8) for proccssing a crinklc wisc 
stored imagc of 128*128 (256*256) pixels (171. 

3.3 Pyramid mapping on the CLIP4 
A pyramidal data structurc was implcmcntcd in thc imagc 

mcmory of the Dclft CLIP4 proccssor array. Thc pyramid con- 
sists of nine levels, the top lcvcl bcing 1*1, thc basc lcvcl bcing 
256*256 pixels in sizc. The levels 0 (= top) through 5 (= 32*32 
pixels) are storcd in the upper left part of a 64 by 32 Delk CLIP4 
mcmory plane. Level 6 (= 64*64 pixcls) is storcd window wisc 
in two memory plancs. The lcvels 7 (= 128*128 pixcls) and 8 (= 
basc) are storcd crinklc wisc. All the pixcls of levcl7, having thc 
same father in level 6 are storcd in the memory of the samc PE. 
In total, level 7 occupies cight mcmory plancs. The first four of 
thcsc plancs contain successively the uppcr lcft, upper right, low- 
er left, and lower right sons of the pixcls in the uppcr half of the 
image at level 6 of the pyramid. The last four plancs of lcvcl 7 
contain the sons of thc pixels in thc lower half of the lcvcl 6 im- 
age. The same rclation as the one that exists betwcen thc lcvcls 6 



and 7 of the pyramid, holds for the levels 7 and 8 of the pyramid. 
The imagc of  level 8 is stored in thirty-two memory planes. The 
pixels in the first four memory planesof level 8 represcnt the four 
sons of the pixels in the first memory plane in which level 7 is 
stored, and so on. 

To store a binary pyramid in the Delft CLIP4's image mem- 
ory, forty-eight memory planes are used. To store a grey value 
pyramid, eight times as many memory planes are needed. 

4 ALGORITHMS 
4.1 Edge detection in noisy binary images 

The problem of detecting an edge in a noisy binary image is 
illustrated in Figure 4. Given the binary image as shown in Figure 
4a. the original contour of the hand has to be recovered. The re- 
sult of the algorithms is shown in Figure 4b. 

f'lxurc 4 Ed~cl d1'1c.c.lion in noisy binary image: (a)  original 
256*256 image, (b) result image. 

The window and crinkle mapping version is as follows. 

make three copies of the image 
edge detection in the first copy 
erosion, dilation, edge detection, and a dilation in the second 
dilation, erosion. edge detection, and a dilation in the third 
result is the logical AND of the three obtained images 

I I 
The edge detection algorithm using pyramid mapping is a9 

below [9]. Note that in this algorithm, the function clea n(...) re- 
moves the noise pixels which is in- or outside the object (see Fig- 
ure 4). 

clean (pyramid-I) 
put negation of image in base of pyramid-2 
clean (pyramid-2) 
dilate base of pyramid-2 
result is the AND of the images in the bases of both pyramids 

The pseudo code for the clea n(...) subroutine is given below. 
For the results which appear in Table 2, the variable higherlevel 
was chosen equal to the number of the level which is just above 
the base. Changing higherlevel alters the size of the noise that is 
removed. The base of the pyramid has the highest number, the 
top (= level 0) has the lowest number. 

for level = base-l lo higherlevel do 
pixels get value which is the AND of their four sons 

od 
edge detection in base and in higherlevel, result is saved 
dilation higherlevel 
for level = higherlevel+l lo base do 

pixels get value which is equal to their father value 
od 
erosion base image 
logical AND of the base image with the saved edges 

Figure 5 Mtx grey v(1111(' ~xumple: (a) original 256*256*8 bit 
image, (h) result image with positions of ma* greyvalue. 

An algorithm suited for a window or crinkle mapped image 
is described below. After execution, maximum contains the max- 
imum grey value and the result-image shows its position. 

all pixels in the result-image are set to one (1) 
maximum = 0 

factor = 2 7 

stop = false 
for all bitplanes of source image do 

most signiiicant bitplane of source (not yet ueated) is 
ANDed with result and result is put into help-image 

count = number of pixels set in the help image 
$count != 0 then 

result-image = help-image 
maximum =maximum +factor 

fi 
factor = factor / 2 

od 

The pyramid mapping version is as follows. 

for level = base-1 to top do 
pixels get value which is maximum of their four sons 

od 
maximum = value in the top of the pyramid 
for level = top+l to base do 

pixels get value which is equal to their fathcr valuc 
od 
EXOR all bitplanes of base with bitplanes of original image 
invert all bitplanes base 
result-image = logical AND of all the bitplanes in the base 

In both algorithms, a test image completely filled with the 
maximum possible 8-bit number has been used. 

4.3 Counting the fingers on a hand 
An image of a hand has to be processed in such a wav, that 

the fingers i f  the hand become separate objects. These arc then 
to be counted. Given the binary image as shown in Figure 6a, the 
resulting finger images are shown in Figure 6b. 

Figure 6 Courrting rhefirr~ers: (a) original 256*256 image, (b) 
resulting fingers to be counted. 

4.2 Finding the maximum grey value in an image The window or crinkle mapping version: 

The problem of finding the maximum grey value in an image 
is illustrated in Figure 5. Given the grey value image as shown in dilate the image 16 times (same structuring element) 
Figure 5a, a binary image has to be constructed showing the po- negation image 

sitions of the image points with maximum grey value. The result and image with the original image (now only fingers are left) 
count the number of objects in the image 

of our algorithm is shown in Figure 5b. 



The pyramid mapping vcrsion is as follows [16]. 

for level = basc-l to top do 
pixels get value which is the AND of their four sons 

od 
find upperlevel of pyramid, which is not empty and which is 

near to the top of the pyramid as possible 
dilate upperlevel 
for level = upperlevel+l lo base do 

pixels get value which is equal to their father value 
od 
negation of the base imagc 
AND base image with original image (only fingers are left] 
count the numhcr of objects in the image 

5 DISCUSSION OF RESULTS 
Thc timcs which were mcasured on the Delft CLIP4 are giv- 

en in Tablc 2. All timings were done with a minimum of systcm 
ovcrhcad, whilc pcrforming thc algorithm ten timcs (and divid- 
ing thc result by ten). 

For the edge dctcction and the fingcr count algorithms, ESS 
is about 20% faster than crinkle mapping bccause ESS handles 
local ncighbourhood operations more efficiently. The algorithm 
for the determination of the maximum grey value shows a differ- 
cncc between ESS and crinkle mapping caused by a slightly 
smallcr overhead for ESS. 

The maximum grey value algorithm performs very poorly 
for the pyramid mapping because multi-bit values are compared 
on the 1 bit PEs. Also, the simulation of a pyramid on the Delft 
CLIP4 has many layers (near the top) in the pyramid stored in a 
window-wise manner. Processing them up- and downwards 
causes a lot of overhead. As the pyramid mapping encompasses 
thc crinkle-wix mapping, it is better to perform the window ori- 
ented algorithm in the base of the simulated pyramid (indicated 
by the value betwecn brackets in Table 2). 

With the pyramid edge dctection algorithm, only the crinkle- 
wise stored layers of the pyramid are used. Openings and clos- 
ings of a binary image in the window oriented algorithm arc re- 
placed by up and down processing in the pyramid algorithm. 
Therefore, the timings of the different algorithms are compara- 
ble. 

The finger count algorithms fall into two parts: the isolation 
of the fingers, and the actual counting of them. The actual count- 
ing of the fingers takes the same amount of time for all three map- 
ping strategies. The finger isolation is done using erosions and 
dilations for the window oriented algorithm, whilc using up- 
wards ANDing and passing values through downwards for pyra- 
mid mapping. The latter involves lcss scans due to the smallcr 
sizes of the pyramid levels. 

As the algorithms for pyramid and window oriented map- 
pings differ, the qualitative results can be different. The window 
oriented finger counting algorithm uses the prior knowledge of 
the size of the hand, whereas the pyramid-oriented algorithm is 
completely handsize independent. The pyramid oriented cdge 
detection algorithm is a little bit sensitive to small shifts of the 
image, whereas the window oriented algorithm is not. 

Table 2 Performance of mapping methods on Delfr 
CLIP4 (all rimes in m . )  

6 CONCLUSIONS 

Mapping 
method: 

edge store scanning 
crinkle mapping 
pyramid mapping 

Window mapping: If a processor array can access its neigh- 
bours in parallel and if scanning hardware is available, then one 
of the described window mapping techniques may be more 

suited. 
Crinkle mapping is good for operations which do not use 

many neighbourhood connections, c.g. in case of point opera- 
tions (maximum grey value algorithm). 

Pyramid mapping is advantageous if the higher pyramid lev- 
els can be used for more global operations or operations that can 
be performed on sampled versions of the image (e.g. many ero- 
sions or thresholding a blurrcd image). Pyramid mapping is dis- 
advantageous for comparing grey values in the top of the simu- 
lated pyramid. However, as pyramid mapping encompasses crin- 
kle mapping, the crinkle algorithms can also be used in the base 
of the pyramid without reorganising the data. 

Algorithm: Different mapping strategies led to different ap- 
proachcs to solve image processing problems. If. for example, 
shrinking or cxpanding is used with window mapping, up- and 
downwards processing can be used in pyramidal mapping. 

edge 
detection: 

438 
553 
423 
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Maxgrey 
value: 

55 
52 
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