
MVA'SO IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

SimPar - a Programmer Oriented Software Environment for
the Pyramidal Vision Machine SPHINX

Edwige E. Pissaloux, Samir Bouaziz, Alain Mbrigot, Francis Devos

Inst i tut dlElectronique Fondamentale, CNRS LA 022
Universitk Paris XI

91405 Orsay Cedex, France

In this paper we present the minimal software environment
-SimPar- for Multi-SIMD massivelv oarallel orocessine
system (SPHINX machine). It ddsdribes thk paral lz
process management at software levels, and introduces the
programming style for parallel software design, named co-
programming. The presented results can be easily applied
to design of any parallel system with Multi-SIMD or
MIMD control.

The advent of parallel MIMD and Multi-SIMD systems has
created the demand for software techniques to help utilize
of this new processing power.

Much effort has been devoted to the development of parallel
languages for as well MIMD and SIMD machines and there
exists a wide variety of compilers ([I-31). However,
programming Multi-SIMD machines is still a problem as
one has to program independent control processors to
perform a fine grain coherent data manipulation. This leads
to problems -in language design: basic software
develoument and aleorithmic studies. In all these cases it is
required to have <robust simulation and development
programming environment.

This paper presents the software simulation environment
SimPar developed for the pyramidal vision computer
SPHINX. The Multi-SIMD control strategy of the machine
influences the SimPar architecture, so we will start with its
brief presentation. We will continue by giving an overview
of the SimPar and will finish by showing an example
implementation of a basic image processing operation.

3.IMD control s t r a i a e

The SPHINX, (SPHINX for Systkme Pyramidal
HitrarchisC pour le traitement &Images NumCriques), is a
massively parallel pyramidal computer dedicated to image
processing, currently being developed by Paris Sud
University, in Orsay and ETCA, Defence Research
Laboratory in Arcueil (France).

The SPHINX machine is organized as a set of stacked
layers of PEs (Processing Elements) of decreasing size
interconnected by means of a dual topology : a mesh-based
four-neighbour interconnection network within a layer and
a pure binary tree between layers.

Figure 1 shows the organization of the SPHINX machine
with its distributed Multi-SIMD (MIMD) control strategy,
implemented by means of a linear network of controllers,
one per layer.

binary pyramid MlMD control

Figure1 : Architecture of the SPHINX

To fulfill temporal control constraints, whilst still having
enough programming flexibility, layer controllers are
subdivided in two parts :

a high level controller (HLC), which provides an interface
between the host computer and the pyramid; it runs user
programs execution which generates low level instruction
and data to its SIMD layer;

a low level synchronizer (LLC), which supplies
instructions received from the HLC the pyramid, and
controls temporal occurrence of instruction execution with
respect to an object based communication strategy between
layers.

To guarantee high temporal performances of the pyramid,
an asynchronous communication model has been
implemented. It uses a dual-port memory attached to each
sun-father junction of the binary tree, where interlayer
communication channels are implemented. Thus the
asynchronous communication scheme can be implemented
and it will largely improve execution efficiency as well as
programming flexibility of complex image analysis
algorithms.

At present, this control scheme is under hardware
implementation; the SimPar environment uses its
functionnal principles.

The SimPar is a software environment developed in C on a
Unix machine to simulate the SPHINX computer. It uses a
fast swap mechanism between pseudo processes (later just
called "processes") simulated within an UNIX process. Its
main purpose is to provide :

a low level interface for firmware development when
debugging SPHINX microcode (scheduler for low level
synchronizer);

a support for algorithms prototyping and for basics of the
SPHINX operating system development (scheduler for
process management).

4.1. T h e S imPar fo r low level simulation,

The low level of simulation is particularly useful for
machine microcode and machine behaviour testing at
every clock period. It relies on the following assumptions :

Although the different layers are independently
controlled. the instruction execution is svnchronous , - - - -
within the complete pyramid.

Execution of serial code on the high level
controller takes a null time. As generated low-level
instructions are buffered in a FIFO, this hypothesis,
although optimistic, is correct in many cases.

These assumptions allow a simple management of
execution time in the following way. At the lowest level,
SPHINX i s programmed by means of MAP, a
programming language that allows to use as well pyramid
microinstructions and C control structures. The translating
program can generate actual code for the final machine or a
simulation program by means of a generation of a sequence
of basic RTL-like data movements for every pyramid
macroinstructions. These basic data movements are used
either in a sequential simulation of the pyramid behaviour
or in a parallel simulation on the Connection Machine [5]
using the PARIS library. In order to properly simulate the
temporal occurrences of instructions these simulating calls
are intermixed with synchronizing procedural calls that take
place whenever a clock cycle has elapsed, in order to
maintain a proper relative time within the different layers
and when interlayer synchronization takes place for data
exchange.

Synchronizing sequences will use SimPar facilities to
maintain a coherent state of the different layers of the
pyramid. The following scheduling algorithm guarantees
that every instruction generated by the sequential simulator
will correspond to instruction generated by the real parallel
machine, and maintain a proper time on every layers :

while the layer instruction queue is not empty
fetch the pending instruction
while this instruction is not executed

if the low level synchronizer can accept it
if an interlayer synchronization is required

update the layer time as the maximum
value on both layers

send the instruction to the synchronizer and
update the layer time

mark the instruction as executed
swap to process on next layer

Each instruction sent is executed by the process simulating
the scheduler. It is possible to trace instruction execution
once finished or at every clock period (thus enabling very
fine execution control). Debugging and profiling tools to
monitor instruction queues, watchdogs, execution
statistics, etc ... can be easily inserted in this methodology.

4.2. User Interface of SimPar,

SimPar manages several processes within a single Unix
process. This management is realized by means of a set of
functions and macros written in C and assembly language.

The process scheduler is an essential part of process
management in the SimPar. It provides several functions
allowing the implementation of the SimPar's functions and
user's algorithms.

SimPar's process management is performed using the
following functions :

void SimParCallProcess()
int SimParGetProcessId(),

SimParSwap(),
Process *SimParGiveNextProcess()

The user's processes are chained in the FIFO queue. The
scheduler manages this queue in a fashion determined by
user's program. Altough there exists a default scheduler
toilored to our simulation needs, it is still possible for every
user to write his own scheduler.

Current functions of the scheduler are :
i t adds a new process when user cal ls

SimParCreateProcess() function;
it suppresses a process when user's C function (a SimPar

process) reaches SimParRetumIs() function;
it swaps to another process whenever it encounters a

SimParSwap() call.

For low level simulation purposes this last function is
generated by the low level code generators for every
simulated clock ~ e r i o d (or instruction execution according
to the granularity of the'simulation) to allows a concurrent
trace of the different controling processes. However this
functionnality implies a very low level programming
language and is dedicated to basic library development, not
to algorithmic studies.

To allow fast algorithm prototyping, user level function
have been introduced. They realized a simple data exchange
between adjacent layers, then swap to the destination layer.
These are Sendup(), SendDown(), Getup() or GetDown()
function. They realize an object based asynchronous
communication. Altough less efficient than optimized
assembly level coded routines, code written using these
functions could also run unchanged on the real hardware.
An example program using these functions is presented in
the following section.

of the Darallel software In the SlmPar
e n v l r o n W

In the SimPar environment, a program is defined as a set
of, communicating or not, functions implementing the same
algorithm.

This definition serves to implement user's functions by
means of enhanced co-routine principle ([7]), in a new style
named co-programming ([8]).

In the SimPar environment, the user's functions are written
in C and use the SimPar process management routines.

The following example shows an implementation of the
histogram algorithm on the SimPar. This algorithm is a
straighforward implementation deriving directly of the
histogram definiton. It loops over every different possible
values of the gray level. For every value, it selects the
pixels with this value, then calculates the number of
selected pixels in the pyramid base. This summing
operation is executed in log2(N) steps, and the calculated
result is sent back to its controller by the top process of the
pyramid of h layers. Any intermediate layer gets the partial
result calculted by the underlying layer, adds received
values and sends the obtained result to its father.

(
int i, histogram[MAXVALUE]

PyramidAdr Image, Buffer,
SimParInit();

SimParCreateProcess(process-base, *p,
DimStack, hj);

for(i=l; i < h; i++)
SimParCreateProcess(process-inter,

DimStack, i);
histogram~l=SimParCreateProcess

(process-top, DimStack, 0);

process-base(Image, val)

(
PyrarnidAdr Select ;
SpxEqualConst(Image.val,Select);
SendUp(Buffer, Select);
SimParReturnIs();

1

(
PyramidAdr S u m , LSon, RSon, Carry;
GetDown(Buffer, LSon, RSon);
Add-with-Carry(Sum, LSon, RSon);
SimParReturnIs(GetFromPyramid(Sum));

I

(
PyramidAdr S u m , LSon, RSon, Carry;
GetDown(Buffer, LSon, RSon);
Add-with-Cany(Sum, LSon, RSon);
SendUp(Buffer,Sum);
SendUp(Buffer,Carry);
SimParReturnIs();

I

Different scheduling techniques could have been used by
the user to manage the successives values. For instance,
instead of creating a process for every value to compute, a
unique process could have been initiated on every layer that
would have processed all the successives values. SimPar is
used to experiment different programming methods for
MultiSIMD processing.

6. Adviu&.ges of the SimPar environment.

The following caracteristics of the SimPar environment
allow easy testing of machine microcode, easy writing and
debugging of high level software :

the SimPar environment allows parallel program writing
in the co-programming style;

the SimPar and its running processes are viewed as one
process by Unix; consequently the number of Unix
processes does not grow, the use of the Unix process
manager is eliminated, and the programmer can finely
control all his processes;

Inter process communication is easily realized by means
of global variables instead of complex Interprocess
Communication Mechanisms ;

the programmer works in a software environment defined
by himself: he may write his own communication or
synchronization mechanism ;

fine synchronization is easily "observable" by the
programmer;

it allows debugging of parallel programs by means of
standard Unix debuggers like dbx;

it allows the entrapment of the execution of instruction on
every machine cycle;

the processes can be executed on a simulator as well as on
the real machine without any major modification;

Because the SimPar facilitates parallel software design we
say that SimPar is a programmer oriented environment.

This paper presented the software environment SimPar
developed for the pyramidal Multi-SIMD vision machine
SPHINX. This environment includes both : a machine
simulator and basic software integrating several operating
system functions.

At an algorithmic level the SimPar allows the design of
parallel programs to be a set of concurrent processes for
which the SimPar implements user's supplied
synchronization mechanism.

The SimPar approach can be used to design the software of
any level for any (massively) parallel computer with Multi-
SIMD and MIMD control strategy.

-
[I] Sharp, J.A., An introduction to distributed and parallel
processing, Blacwell Scientific Publication, 1987
[2] Evans, D.J. (Ed), Parallel Processing Systems,
Cambridge University Press, 1982
[3] Perrott, R.H., Parallel programming, Addison-
Wesley,
[4] MChat, J., MCrigot A., Roc. on the 2nd Symp, on the
Frontiers of Massively Parallel Computation, pp.423-428
(Fairfax, Virginia, 1988)
[5] Rougerie, E., Technical Report, Univ. Paris XI, 1990
[6] Ni,Y. , MCrigot A., Devos F., in V. Cantoni (ed.),
Progress in Image Analysis and Processing (World
Scientific, 1990),pp.759-766
[7] Knuth, D.E., The art of computer programming
(Addison-Wesley, 1976)
[8] Pissaloux, E.E., Bouaziz, S., MCrigot, A., Devos, F.,
The Euromicro Journal, vol. 30, Numbers 1-5, August
1990, pp. 569-576
[9] Tanimoto, S.L.. Ligocki, T.J., Ling R., in L. Uhr,
(ed.) Parallel Computer Vision (Academic Ress,1987),
pp.43-83
[lo] Schaefer, D.H., Ho P., Boyd J., Vallejos C., in L.
Uhr, (ed.) Parallel Computer Vision (Academic
Press,1987), pp. 15-42
[l l] Cantoni V., Levialdi S., in L. Uhr, (ed.) Parallel
Computer Vision (Academic Press,1987), pp.3-13

