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ABSTRACT 
Multiresolution pyramid techniques can improve 

the efficiency of basic vision algorithms by orders of 
magnitude. They will be key to developing practi- 
cal vision systems to perform challenging tasks in real 
time. However, these efficiencies cannot be fully real- 
ized when pyramid-based algorithms are implemented 
on machines with conventional SIMD mesh and pipeline 
architectures. We describe a segmented pipeline archi- 
tecture that can support pyramid processing. We il- 
lustrate this architecture with an application to image 
motion analysis for vehicle guidance. 

INTRODUCTION 
Pyramid techniques have become a standard ele- 

ment of algorithms for such computationally demand- 
ing vision tasks as stereo and motion analysis. They 
provide important mechanisms for achieving efficiency, 
and for isolating signals from noise and background 
clutter. When implemented in software, on general 
purpose computers, these techniques have improved 
speed dramatically, often by two, three, or more or- 
ders of magnitude. 

However the same techniques are not readily trans- 
ferred to the parallel computing machines, such as SIMD 
mesh and pipeline designs, that are under considera- 
tion for real-time vision applications. Difficulties arise 
in keeping processing elements busy when sample rates 
change within the pyramid, and analysis is restricted 
to regions of 'focal attention.' 

We are developing a modified pipeline design, the 
segmented pipeline, to overcome the limitations of cur- 
rent designs [I]. In this paper we review the segmented 
pipeline concept, and show its application to image mo- 
tion analysis for vehicle guidance. 

PYRAMID-BASED ANALYSIS 

Image pyramids are commonly used as a basis for 
efficient coarse-fine search. Less well know, but equally 
important, pyramid techniques have been developed in 
recent years for isolating signal components in com- 
plex imagery, and for implementing focal analysis tech- 
niques. All of these techniques can be implemented 
within a common framework to serve image motion 
analysis. 

Coarse-fine search has been described for motion 
analysis by numerous researchers, e.g, [2],[3]. Motion 

analysis for a given pair of image frames begins at  a 
low resolution pyramid level. There an initial rough 
estimate of image motion can be obtained at  minimal 
computational cost because data arrays and frame-to- 
frame displacements are small. The estimate is then re- 
fined in steps as analysis moves to progressively higher 
resolution pyramid levels. The computation cost re- 
mains low because these refinements involve only low- 
complexity local computations. 

The pyramid also provides a powerful means for 
separating multiple motion components without ex- 
plicit image segmentation. For example, motion tuned 
'channels' are obtained by applying motion analysis 
separately at  each level of the Laplacian pyramid rep- 
resentations of an image pair [5 ] :  fast motions are de- 
tected at low resolution levels, while slow motions are 
detected at high resolution levels. An ability to scp- 
arate motions with very similar velocities can be ob- 
tained by taking advantage of this selection property 
in coarse-fine search [6]. In this way image regions con- 
taining multiple superimposed moving patterns, such 
as moving shadows or transparent objects, can be an- 
alyzed. 

Integration pyramids provide a means for system- 
atically controlling the size of the local regions in which 
individual motion estimates are obtained, as well a s  
the image resolutions at which computations are per- 
formed. The best choice of region size depends on im- 
age content: small windows are required near motion 
boundaries, while large windows are best in areas of 
uniform motion [7]. 

Finally, the pyramid provides an ideal framework 
for implementing focal analysis strategies that are anal- 
ogous to eye movements in humans: details of a scene 
are sensed only within a focal region of the scene, while 
the scene as a whole is sensed at  much reduced reso- 
lution [8]. Focal analysis can be implemented as a se- 
quence of focal probes, as suggested in Figure 1. Each 
probe examines a different region of the scene at  a dif- 
ferent resolution. In this driving scene, probes at  low 
resolution are used first to identify the road near the 
vehicle, then probes at  progressively higher resolution 
are used to follow the road into the distance. Other 
probes are used to locate and analyze oncoming velli- 
cles and road signs. Image data processed in succes- 
sive probes is obtained from selected analysis windows 
within a pyramid representation of the image, as shown 
on the right in Figure 1. 
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Figure 1. Analysis of a road scene as a se- 
quence of focal probes (a) based on data from 
a multiresolution image pyramid (b). 

In this paper we examine parallel implementations 
of an algorithm that incorporates all four of these pyra- 
mid techniques. Details of the algorithm are not re- 
quired here, but can be found in [7]. Figure 2 illustrates 
an application of the algorithm to a vehicle guidance 
task. A vision system on board a moving vehicle is 
used to detect objects moving in or near a road, such 
as the postmen in this example. The system must dis- 
criminate between image motion that is due to the 
observer's own motion, and that which is due to ob- 
ject motion. At the particular point in time shown we 
assume the system has selected a region of the scene 
for focal analysis that contains the road as it recedes 
into the distance, Fig. 2b. Figure 2c shows the dif- 
ference between two successive images of the sequence 
within this focal region. Image motion is dominated 
by camera rotation, as is evident in the significant mis- 
alignment in this difference image. Coarse-fine motion 
analysis is performed within the focal region to deter- 
mine displacement due to camera motion. Successive 
images are then aligned based on this estimate, and a 
difference image is formed, Fig. 3d. The postman is 
now isolated from the background due to his relative 
motion. 

CURRENT LIMITATIONS 
Because pyramid techniques will play an impor- 

tant role in real-time applications, it is important that 
vision machines support pyramid-based computations 
effectively. In particular, the architectures for a real- 
time vision system must (a) accommodate a wide varia- 
tion in sample densities, (b) accommodate a wide varia- 
tion in the size and position of the focal analysis region, 
and (c) accommodate rapid changes in these character- 
istics in the course of highly dynamic analysis. 

In many respects conventional SIMD mesh and 
pipeline architectures are well suited for motion anal- 
ysis. The operations performed are local and homoge- 
neous: computations at  a given point are based only 
on sample values in a restricted neighborhood of that 
point, and the same operations are repeated at  each 
sample point over extended regions of the image. How- 
ever, when multiresolution focal techniques are used, 
both the mesh and pipeline designs. If a separate pro- 
cessing element is assigned to each image pixel, as in a 
'fine grained' SIMD mesh, reductions in sample density 
or in the size of the focal analysis region only result in 
most processors being left idle. Since active processors 
are widely separated, communication between proces- 
sors is slow. If a processing element is assigned to a 
block of image pixels, as in a 'coarse-grained' mesh, 

Figure 2. (a) Postman crossing road. (b) Re- 
gion selected for motion analysis. (c) Differ- 
ence between successive image frames show- 
ing motion due to the camera and postmen. 
(d) Difference after detecting and compensat- 
ing for surface motion within the analysis re- 
gion. 

then there is less parallelism but more flexibility for 
the system to adapt to changes in sample density. But 
restrictions in the focal analysis region still leave many 
processors idle. 

A pipeline machine has some advantages over a 
mesh. It can process subsampled, region-of-interest 
data if these data are read selectively from an input 
memory buffer: only samples that need to be processed 
enter the data stream, and the transmission rate is 
matched to the capacity of the processing elements. 



Still, if further subsampling or windowing takes place 
in the course of analysis, then subsequent processing 
elements in the pipeline run below their capacity. 

SEGMENTED PIPELINES 
To resolve these difficulties we proposed a modi- 

fied pipeline system. In this ~egmented pipeline the flow 
of data through the processing steps is interrupted pe- 
riodically and data are returned to a memory buffer. 
Data transfer rates can then be readjusted to compen- 
sate for changes in sample densities and the size of the 
analysis region. 

The computation within a segmented pipeline can 
be specified with an image flow diagram. This repre- 
sents each processing step with an appropriate symbol 
and indicates the paths followed by data as arrows be- 
tween symbols, Figure 3. 

Each pipeline segment is a simple pipeline. A 
pipeline segment consists of an input buffer, a sequence 
of processing elements, and an output buffer, as shown 
in Figure 3a. Image data are organized into blocks, 
each representing an array of image samples. Image 
processing is performed as a data block is transferred 
from the input buffer, through the processing elements, 
into the output buffer. Samples are transferred sequen- 
tially, in a prescribed order (e.g., raster scan). 

Resampling steps can be included within a pipeline 
segment, as shown in Figure 3b. While resampling by 
arbitrary factors is possible, a factor of two is most 
common and will be assumed here. In this case the 
data stream that is output from a down-sampling op- 
eration, 1, consists of every other sample and every 
other row of the input data stream, while other sam- 
ples are discarded. Up-sampling, f ,  means that a new 
sample (with value zero) is inserted between each pair 
of input samples and a row of new samples is inserted 
between each pair of input rows. 

Down-sampling in two dimensions results in a re- 
duction in data rate by a factor of f ,  while upsampling 
results in an increase by 4. In the figure, data rates are 
indicated as numbers under the transfer arrows. Here 
the full data rate is shown as a 'l', while reduced rates 
are fractions: f ,  &, etc. 

Down-sampling and up-sampling operations are 
shown in these diagrams as distinct processing steps. 
In practice such operations are performed in conjunc- 
tion with other processing steps and with buffer 110. 
Down-sampling is generally performed after a process- 
ing step and before data is stored in a memory buffer, 
while up-sampling is performed before a processing step 
and after data are read from a buffer. Resampling in- 
curs no cost or delay. 

A windowing operation is performed at a given 
pipeline segment when a subarray of data are read from 
the input buffer and transferred through the processing 
elements. We show this as a shaded rectangle of data 
within the buffer symbol, Figure 3c. 

EFFICIENCY ANALYSIS 
A pipeline computation, and hence a pipeline seg- 

ment, may consist of multiple data pathways running 

Figure 3a. A basic pipeline segment. 

Figure 3b. A pipeline segment with resampling. 

Figure 3c. A pipeline segment with windowing 

in parallel. A simple case is shown in Figure 4a. Here 
a single input path diverges to form two paths, with 
identical copies of the source data flowing on both. The 
pathways merge at processing element P4. This could 
be any image operation that requires two inputs, such 
as sample-by-sample addition or multiplication. 

Figure 4b shows an alternative implementation of 
the same computation as that in Figure 4a, but now 
organized as two pipeline segments. Data processed in 
the parallel pathways is stored in buffers B2 and B3 
after the down-sampling step. These become the input 
buffers for the second segment. Note that processing 
elements P2  and P 4  run at rate in the single segment 
implementation, but at full rate in the two segment 
implementation, thus providing a potential for more 
efficient use of these processing elements. 

Figure 4a. pipeline segment with multiple paths. 

Figure 4b. The same computation as two segments. 

The efficiency of these two implementations can 
be analyzed as shown in Figure 5. Time utilization of 
each processing element in the pipeline is shown over 
the course of the computation. Assume the initial data 
block has unit size, and that the nominal processing 
rate of all processing elements is one unit of data per 
unit of time. (There are added buffer delays within 
individual processing elements required to implement 
neighborhood operations, but these are insignificant for 
the present analysis.) The computation in the first con- 
figuration takes one unit of time, and all four processing 
elements are active during this entire period. However, 
processing elements P2 and P4 run at only 114 capacity 
because they follow the subsampling steps. 
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Figure 5. Processor time utilization for the 
pipelines in Figures 4a and 4b. 

The diagram for the second configuration shows 
that two processing elements are busy for one time unit, 
then two other processors are busy for 114 time unit. 
In this case each processing element runs at full capac- 
ity when it is busy. The overall computation takes 25% 
longer than the computation in the single segment con- 
figuration. However, processing resources can be more 
efficiently used in this case, by assigning individual el- 
ements to other processing tasks when they are not 
required for the computation shown. 

We define efficiency as the ratio of the processing 
performed by all the processing elements over the time 
course of the computation to the processing that could 
have been performed by these same elements if they ran 
at full capacity throughout the period they are assigned 
to the computations. By this definition the efficiency of 
the first configuration is .625 while that of the second 
is 1. The benefit of the segmented implementation are 
modest here, but can be very significant in other, more 
complex computations. 

APPLICATIONS TO MOTION ANALYSIS 

The motion analysis technique outlined, and il- 
lustrated in Figure 2, can be implemented within a 
segmented pipeline. The basic structure is shown in 
Figure 6. 

Motion analysis is performed on two image frames, 
A and B. The algorithm estimates the motion, or dis- 
placement, from A to B in terms of parameters such 
as translation, rotation, and dilation. To achieve pre- 
cise results, the basic computation shown is repeated 
scveral times for the given pair of images. With each 
iteration, analysis moves to a higher resolution pyra- 
mid level, and to a smaller analysis window. In each 
iteration an array of local correlation values is com- 
puted within the pipeline machine. Then parameters 
of motion are obtained by fitting a motion model to 
the correlation data. This computation is performed 
by an external microprocessor. 

The computation begins with image A warped to- 
wards image B in accordance with a priori motion es- 
timate Vo. This reduces the frame-to-frame displace- 
ment that must be estimated by the computation, and 
hence increases its accuracy. Next a Gaussian pyramid 
is constructed to level 2 for both the warped A and the 
original B. The image Az is then shifted relative to 

Bz by -1, 0, and 1 samples in x, and the two images 
are multiplied, sample-by-sample, to form three prod- 
uct images M-, M O ,  M+.  (In practice A2 is shifted 
by -1, 0 and 1 in both x and y, to form nine product 
images.) Next, an 'integration' pyramid is constructed 
for each product image to level 4. The resulting sam- 
ples represent local cross-correlation values between the 
reduced resolution image arrays, A2 and B2, each de- 
fined within a gaussian weighted neighborhood. These 
correlation values are then accessed by the external mi- 
croprocessor for motion estimation. 

The motion estimate Vl of Iteration 1 is used in 
the second iteration to specify the warp for image A. 
The size of the focal analysis window is reduced by 2 
in both x and y with each new iteration, and analysis 
is moved to the next higher resolution pyramid level. 

The size of each rectangle in this image flow di- 
agram indicates the total data in the corresponding 
array. A rectangle with a solid outline signifies that 
the image array resides in a memory buffer, while a 
dashed outline signifies that the array is an intermedi- 
ate result of a pipeline process that is never stored in 
a buffer, but that is shown for clarity. 

The overall pipeline computation is divided into 
distinct segments, S1, S2, ..., S8, as indicated in the 
figure. Note that segments S1 and S2 are on different 
data paths than S 3  and 5'4, so can be run in parallel. 
Similarly, S6, S7 and S8 can be run in parallel. Seg- 
ment S5 is particularly interesting as it includes mdti-  
ple data paths that diverge then merge. All processing 
in S 5  must be run synchronously, in parallel. 

PERFORMANCE ANALYSIS 

A time/utilization diagram for the motion com- 
putation shown in Figure 7. Three iterations of the 
computation are shown. With each iteration it is as- 
sumed that the analysis window is reduced in size by 
a factor of four, and analysis is moved to a higher res- 
olution pyramid level. This means the initial pyramid 
construction steps, P2 and P4, are skipped in Iteration 
2, and P2, P3, P4 and P5 are skipped in Iteration 3. 
(P6, P7 and P8 are not included in the analysis be- 
cause they only perform a shift by 1 sample, a function 
that, in practice, would be incorporated with another 
processing step, such as multiplication, P9, PI0  and 
P11). 

In this case the total time for the standard pipeline 
would be 3T while that for the segmented pipeline is 
1.73T. The efficiency of the standard pipeline for the 
three iterations would be .28, .098, and .048, rcspec- 
tively, or .I43 overall. The efficiency of the seg~nented 
system is 1. 

SUMMARY AND DISCUSSION 

Pyramid techniques will be an essential past of 
practical vision systems that perform challenging tasks 
in real time. But to take advantage of these techniques 
a system must be able to accommodate large changes 
in data load from processing step to processing step, 
and must accommodate moment-by-moment changes 
in the computations performed. 



Figure 6. Motion computation diagram. 

, # , , We have described a segmented pipeline architec- - - - 
ture that can maintain efficiency in the presence of such 

P I  changes by decomposing a complex pipeline computa- 
tion into a set of simple pipelines, each with roughly 

P2 constant data load. Processing elements are shifted be- 
tween pipeline segments dynamically, in the course of 

, , 
computat ions. 

P3 A machine to implement such segmented pipeline 
, , processing must be capable of rapidly reconfiguring its 

set of processing elements in order to assemble pipeline 
segments as data flow through the computation steps. 
In addition, it must have a supervisor process to assign 
resources to segments and coordinate the flow of data 
blocks through these segments as they are assembled. 
These aspects of the design are beyond the scope of the 
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present paper. 

Figure 7. Time utilization for three iterations 
of the corase-fine, focal, motion analysis pro- 
cedure. 
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