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This paper presents an incremental approach to understanding 3D 
structure and motion of rigid as well as nonrigid objects from image 
sequences. To be applicable to natural imagery like TV signals, the 
recovery process should meet two requirements: robustness to noise 
and ability of coping with deformable objects. These requirements can 
be met by the use of smoothness-of-motion constraint. The 
smoothness-of-motion constraint provides a framework for temporal 
integration of motion information over a longer sequence, rather than a 
set of image pairs. Based on the nature of motion, i.e, motion 
smoothness, 3D structure and motion information is successively and 
smoothly updated so as to agree with the observed transformation in the 
image. A model of rigid and nonrigid motion is introduced, and the 
smoothness-of-motion constraint is formulated as a stabilizing function. 
Some preliminary results are also given. 

In this paper we consider the problem of computing the structure and 
motion of objects in a scene from a sequence of images. The problem 
of reconstructing the shapes and motion has been studied by computer 
scientists with the objective of developing vision systems for many 
applications. such as robot vision, surveillance systems, object 
backing, autonomous vehicle navigation, and computer graphics[l]. In 
addition, this has recently sated some attention in image coding field, 
e.g., 3-D structure extraction coding[2] and model -based coding[3]. 

In studying the computation of structure from motion, one 
immediately faces the problem that the recovery of structure is 
underconstrained, ill-posed problem: there are infinitely many 3-D 
structures consistent with a given pattern of motion in the changing 2-D 
image. This problem cannot be solved without some assumptions 
about the world. Computational studies of the recovery of structure 
from motion establish that the rigidity is a sufficiently powerful 
constraint for imposing uniqueness upon the 3-D interpretation. The 
rigidity assumption allows recovery of the structure of objects, under 
cemin condition, in 2 or 3 views[4]. 

These theoretical studies have given rise to algorithms for the 
recovery of 3-D information of rigid objects. Thus, to date almost all 
research on recovering structure and motion has been concerned with 
rigid objects using rigidity assumption, and attempt to recover 3-D 
information from a limited number of views of the scene, typically 2 or 
3 views. However, the rigidity assumption and 2-3 view approach can 
be sensitive to noise[5], and clearly is inappropriate when dealing with 
deformable objects. 

To be applicable to natural images like TV signals, the process of 
recovering structure and motion should meet the two requirements: 
robustness to noise and ability of coping with nonrigid objects. 

Regarding the robustness, one way to combat the effect of noise 
would be the temporal integration of motion information. Significant 
smoothing can be achieved by the use of a larger number of images in 
the sequence. This conclusion is supported in recent computational 
studies. This approach is sometimes referred to as trajectory-based 
approach[6]. 

Regarding the nonrigid objects, we must weaken the strict rigidity 
assumption to allow for more general motion. There are some 
researches done to treat the restricted classes of nonrigid motion, such 
as global deformations such as shear, bending, and divergence. 
General nonrigid motion problem was recently formulated. Ullman[7] 
attempts to mover  the structure of a moving object by assuming a 
minimal change in the rigidity of this object between frames. The 
results show that the algorithm is able to recover the approximate 3-D 
structure. The scheme, however, show the depth reversal 
phenomenon, and often wobbles somewhat around the correct solution 
to the 3-D structures. Subbarao[8] seeks to recover structure of 
nonrigid objects on a surface-patch-by-surface-patch basis. In this 
approach the problem may be sensitive to noise because of restricting 
oneself to using only local measurements. 

In this paper we present an alternative approach, i.e., smoothness- 
of-motion approach, to recover the 3-D structure and motion of rigid as 
well as nonrigid objects from a longer sequence. It is shown that the 
use of the smoothness-of-motion would be more flexible and general 
approach than strict rigidity assumption. 

2. REPRESENTATION OF RIGID AND NONRIGID 
MOTION 

We are interested in estimating three-dimensional structure and motion 
parameters of rigid and deformable bodies from image sequences. 
Generally, the motion of a three-dimensional solid is a mathematical 
function F which explicitly modifies the global coordinates of points in 

space 

x,(f+l) = F(xi(f)) (1) 

where xi(() = (xi(!), yi(r), ~ ~ ( 1 ) ) ~  represents the coordinates of the ith 
point in the object at time I, and xi(f+l) = (xi((+]), y;(f+l), z;(I+I))~ is 
the coordinates of the same point after motion at time [+I. 

According to Helmholtz's fundamental theorem of kinematics, the 
most general motion of a sufficiently small element of a deformable 
body can be represented as the sum of a rotation, a uniform 
deformation, and a translation[lO]. Thus, if we divide the body into 
small parts which undergo a uniform deformation, the motion of each 
one part can be described by a linear affine model mathematically, 

xi(l+l) = (&+I + S,+l)xXf) + T(f+l) (2) 

where R,+l is the rotation matrix from time r to 1+1, S,+l is the linear 
deformation matrix from time I to 1+1, and T(I+~)  is the displacement 



vector of the object between time I and t+1 due to translation motion. 
The sum of the matrices R,+I and S,+l is sometimes referred to as 
generali74 motion parameters. 

Clearly, this uniform deformation model, or a linear affine model, is 
a suitable representation only when we assume a very small element of 
a body, and it is inadequate to represent a global or nonuniform 
deformation that occur often in nature. In answer to this problem we 
use a more general and flexible model: 

where D',+, is the transformation function of deformation of ith point 
from time t to t+l. This can be described schematically by 

This representation is highly intuitive and easily visualized, since this 
is equivalent to view the object motion as any translation or rotation 
(rigid motion) is performed after deformation. Also various 
deformation, e.g., bending, twisting, tapering, cavity deformations, 
can be incorporated into the transformation function D1I+l, widening the 
application of the representation. For example, the transformation 
function D'l+I, of tapering deformation along axis z is 

where f, and fy are the tapering functions in the x- and y-axes of the 
object centered coordinate system. 

3. COMPUTING 3-D STRUCTURE AND MOTION 

This section first discuss the smoothness-of-motion constraint used in 
our approach, rather than strict rigidity assumption. Then a nonrigid 
motion model based on the smoothness-of-motion constraint is 
introduced, and a formulation will be presented that uses the 
smoothness-of-motion constraint as a stabilizing function. 

3.1 Smoothness of Motion 

In general, the moving objects exhibit a smooth motion due to inertia 
and elasticity, i.e., the motion parameters between consecutive frames 
are correlated. If a frame sequence is acquired at a rate such that no 
dramatic changes take place between frames, then observed changes in 
the motion will be gradual for most physical objects. Thus, the 
smoothness-ofmotion is a very reasonable assumption for the analysis 
of 3-D dynamic scene. If unusual case such as a collision occurs. then 
some high-level process may be required to analyze the motion after 
collision. 

The advantage of the smoothness-of-motion approach is that it 
provides a framework for integrating time content information over a 
larger number of image frames. That is, this approach to the recovery 
of structure will allow successive refinement of the estimated structure 
of objects as more frames are observed. We believe that the use of a 
longer sequence would meet the two requirements: robusuless to noise 
and ability of coping with nonrigid objects. The multiframe approach 
helps to combat the errors due to noises: significant smoothing can be 
achieved by the use of a larger number of images in the sequence. In 
addition, since a longer sequence gives more constraints than a 2-3 
view approach, we may admit nonrigid objects in our analysis by 
relaxing the rigidity assumption. The smoothness-of-motion approach 
to the recovery of structure would be more suitable for natural scenes. 

Perceptual studies also indicate that the integration of motion 
measurements over time is required to reach an accurate perception of 
rigid as well as nonrigid objects, and that the noise sensitivity of the 
system improves with an increase in the number of frames[lO]. Thus, 
the recovery of structure from motion is not an all-or-none process. 
For a shon viewing times, objects sometimes appear flattcr than the true 
structure of the moving objects. These properties of the human visual 

system are qualitatively consistent with the behavior of the incremental 
multiframe approach based on the smoothness-of-motion constraint. 
We believe that the smoothness-of-motion constraint is more general 
and can f w  ourselves from the strict rigidity assumption. 

We exploit the smoothness-of-motion assumption for computing 3-D 
structure and motion of rigid and nonrigid objects. Based on this 
constraint about the nature of motion, 3-D structure and motion 
information is successively and smoothly updated so as to agree with 
the observed transformation in the image. In other words, update is 
made by resisting changes in structure and motion as much as possible, 
and as rigid as possible. Consequently, we consider the objects 
undergoing a rigid transformation combined with some nonrigid 
distortions, i.e. the deviations from rigidity are not so strong. This 
consideration is comparable to perceptual studies suggesting that the 
visual system can cope with less than strict rigidity, but cannot cope 
with completely unstructured nonrigid objects such as an amoeba. This 
tolerance for deviations from rigidity allows the recovery process to be 
applicable to various environments, and also implies that the recovery 
process has a certain immunity to noise. 

3.2 Formulation 

Let x = (x, y. z) represent a spatial point coordinate, and let u = (u, v) 
represent a corresponding image plane coordinate. The configurations 
of object-coordinates and image-coordinates are chosen such that u, v 
axes coincide with x, y axes, and the z-axis is aligned with the optical 
axis. The formulation in this section assumes orthographic projection 
as imaging model. The low-level problem is not addressed, and image 
coordinates of n object match points are assumed to be available. 

Based on the smoothness-of-motion constraint, we introduce the 
model for the rotation RWI. translation T(t+l), and deformation 
in the rigid and nonrigid motion representation (3). (4). 

If we assume small rotation angles between frames, the rotation 
matrix Rl+t can be approximated by 

1 -w,(t+I) wy(1+l) 
w,(t+l) 1 - +  ) (6) 
- w ( + l )  w ( + )  1 

where w(t+l) = (w,(r+l), wy(t+l), w,(~+l) )~ ,  and w,(t+l), wy(t+l), 
w,(t+l) denote the rota6on angle around the x,  y, z axis, respectively, 
between time I and t+l. Considering the smoothness-of-motion, the 
rotation w(l+l) currently observed depends on previous rotation w(1). 
Thus we introduce the term Aw(t) = (Aw,(t), Awy(t), AW,(I))~ 
representing the changes in rotation between time t and r+ l .  That is: 

Similarly, the translation T(t+l) can be expressed by 

where T(t+l) = (T,(t+l). T,(r+l). T,(I+~))' is a translation vector, and 
AT(t) = (AT,(r), ATy(t), AT,(I))' is the changes in translation between 
time I and t+1. 

One way to describe deformation is the movement of each point. 
But to describe such completely unstructured motion leads the recovery 
process to be badly underconstrained. To transform the recovery 
process to a overconstrained problem, one must invoke some 
simplifications to nonrigid motion such as articulated motion, or 
bending, tapering, pinching deformation. Here we consider only the 
deformation along the optical axis. 

where hi(!) represent deformation of the ith point at time I along the z- 
axis, i.e.. along the optical axis in the orthographic projection, and may 
be considered as a measure of the deviation from rigidity. Although 
this deformation model represent restricted types of nonrigid motion, 
empirical studies suggest that this restricted model is able to cope with 



general nonrigid motion. 
The deviation terms Aw(t), AT((), Az,(t) are introduced in the 

modelling of motion to represent the smoothness-of-motion constraint 
explicitly. In particular, the terms Aw(t), AT([) can be regarded as 
corresponding to the inertia of the objects, and the term Az,(t) to the 
elasticity of the objects. 

Assuming a orthographic projection as an imaging model h, defined 

by 

and u,(t) = (u;(t), v,(t)lT and u;(t+l) = (u,(t+l), ~ , ( t + l ) ) ~  are the image 
coordinates corresponding to the points xi([), x,(t+l), respectively, 
then 

where ~*( t )=h[~( t ) ]  = (T,(t), ~ , ( t ) ) ~ ,  and ~ f ( t )  =h[AT(t)] = (AT,(!), 

~ ~ y ( t ) ) ~ .  
Using the model described above 3-D structure and motion 

information is computed. Our objective is to estimate 3-D information 
at time t+1, i.e., w(t+l), T*(t+l), z(t+l) = (zl(r+l), z2(t+l), ... . 
2.(r+1))T, given 3-D information at time t, i.e., w(t), T0(t), and z(t). 
and the positions of the moving points at time t and t+l. i.e., u;(t) and 
u ( + l  From the equations (7). (8) and (9). this requires the 
computation of the unknown deviation values Aw(t), ~ f ( t ) ,  and &(t) 
= (Az,(t), Azz(t), ... , ~ z , ( t ) ) ~ .  

In the lack of static information about the 3-D structure and motion, 
the initial 3-D information at time r=O are all zero, is., no depth and no 
motion are assumed. As each view of the moving objects appears, 3-D 
information at time t is updated so as to agree with the new frame. The 
update is made such that changes in 3-D information is as smooth as 
possible.and hence as rigid as possible. In other words, new 3-D 
information is obtained by the minimal change of the previous 3-D 
information that is sufficient to account for h e  new h e .  

To derive equations (11) and (12). we have been making two 
assumptions: that the objects being observed exhibit motion represented 
by (3). and the images of the objects are noise free. Thus, to reduce 
errors introduced by these assumptions, we employ a least-squares 
approach which minimizes the deviation between the input frame and 
that predicted from the estimated 3-D information. This approach is 
adopted because of its robusmess. 

In addition, the smoothness-of-motion constraint means that the 
deviation terms Aw(t), Af(t). and &(I) should be small. Hence, we 
introduce the function II P 112 as a measure of the smoothness, and 
formulate the smoothness-of-motion constraint as a functional I1 P IP to 

be minimi7d. 

where a, p, y are scale parameters, and II . II is a LZ norm. 
Thus, to determine the new 3-D information, we choose the function 

E to be minimized as a sum of two terms: the first one is the difference 
between the predicted and input frame measured in the least square 
sense, and the second term is the cost function corresponding to the 
smoothness-of-motion constraint shown in (13). 

After the deviation terms Aw(t), dT0(t), and Az(t) have been 
determined with the minimization o i  the functional E, new 3-D 
information at time t+l, i.e.,w(t+l). T*(t+l), z(t+l), can easily be 
derived from the equations (3), (6)-(9). A new frame is then registered, 

and the process described above repeats itself. 
Note that the algorithm for the recovery of 3-D structure and motidn 

can be formulated within the framework of regularization theory. We 
can consider the functional I I  P 112 as a stabilizing functional in 
regularization to restrict admissible solutions to space of smooth 
functions. 

4. SIMULATIONS 

In this section we illustrate some results of applying the recovery 
algorithm to both rigid and nonrigid objects. The evaluation functional 
E in (14) relates the nonlinearity of deviation terms Aw(t), AT'((), and 
&(t). In general this equation can be solved by using nonlinear least 
squares such as Levenberg-Marquardt Method. 

Because the motion smoothness constrains the magnitude of 
deviations, we assume the deviation terms higher than second order to 
be small or infinitesimal in the minimi7ation of the evaluation functional 
E .  This assumption eliminated thorny issues such as convergence or 
initial value specification that typically plagued most nonlinear 
optimization problems. Our implementation results demonstrated that 
the linear approximation affect little the integrity of the optimized 
solution. 

In all the examples presented here, the scale parameters in (3) are 
e l ,  w . 0 1 ,  w .01 .  The value of the parameters a is designed to be 
almost 102 or 103 times larger than P and y ,, since Aw(t) is radian 
while AT'(() and AZ(t) are pixel value. Furthermore, the scale 
parameters a, p, rare chosen from the compromise among the spced of 
the convergence, robustness to noises, and ability of coping with 
nonrigid objects. The empirical studies, however, show that the 
sensitivity of the parameter selection to estimation results is not so 
strong. 

I) rigid motion : Following Ullman[7], we generate synthetic 
objects containing six points: the vertices of the solid outlined pentagon, 
and a sixth point at the origin. The objects are three-dimensional, not 
merely planer. The sold  line of Fig.1 illustrates the projection of this 
object on the x-z plane. The input to the recovery process consisted of 
the projection of six points of the object on the x-y plane. The dashed 
line in figure shows the estimated structure. 

At frame 1 no depth is assumed, and estimated structure is flat 
(Fig.l(a)). The object is then rotated around they axis. The rotation 
angle between n frame and n+l frame is given by 

w, = 2.0 + sin (2xnn0) (deg). (15) 

Fig.] illustrates the behavior of the recovery process. The estimated 
structure is almost similar to the correct structure at the frame 41, and 
the 3-D motion parameters are also very well estimated. 

(a) Frame I ( b )  Frame 1 1  ( c )  ~ 6 m e  21 

( d )  Frame 31 (e) Frame 41 ( f )  Frame 51 

Fig.1. The recovery o f  a dpoint rigid object ( 1-2 plane: x-horizontal axis, y- 
vettical axis ). The estimated stluaure ( dashed line ) is armpared to the corred 
srmcture ( solid line ). The rotation angle of the object is a function of frame 
number. 



( a )  F r a m e  I ( b )  F r a m e  1 6  ( c )  F r a m e  3 1  

(d l  F r a m e  4 6  ( e l  F r a m e  6 1  (1) F r a m e  7 6  

Fig.2 The recovery of a wireframe cube (x-z plane ). The rotation angle of the 
objea is a function of frame number. 

( d l  F r a m e  31 ( e l  F r a m e  41  (1) F r a m e  51 

Fig.3. The recovery of a 6-point rigid object (x-z plane ). The rotation angle of 
h e  object is a function of frame number. The random noise ( range from -3 
pixels to +3 pixels ) is added. 

Empirical studies show that as long as the motion is contant or 
smoothly changed as (15). qulitatively similar results to these shown in 
this paper (Fig.1-Fig.4) are obtained. It can also be seen that the rate of 
convergence and quality of the solution gradually deteriorates with 
larger angular displacement than 10 degrees. The reason for the 
deterioration is the disagreement with the assumption of the small 
rotation angle in equation (6). 

Fig.2 illustrates the recovery process of wire-frame cube, with 
feauture points on its vertices. The object is transparent, as would be 
the case with a true wire-frame cube. It can be seen that the scheme 
recover the correct 3-D structure as 6 point case. 

In order to understand the effects of noise, the random noise is 
added to the points of the objects. The range of the random noise is 
from -3 pixels to 3 pixels. This noise level can be considered to be very 
high, because the maximum displacement of the points is about 3.5 
pixels. Even in this noisy case, the scheme can still recover the 3-D 
structure successfully as illustrated in Fig.3. 

2 )  n o n r i g i d  mot ion  : Fig.4 shows the example of recovering 
nonrigid motion from a sequence of images. The object at frame 1 is 
identical in shape to the object examined in Fig.1. In this case nonrigid 
transformation is added to to the rotation of the object. The result show 
that the scheme copes successfully with such nonrigid motion as well as 
rigid motion. This tolerance for the deviations from rigidity is also 
implied by the robustness to noise in the rigid motion case. 

Empirical studies suggest that the scheme works well with noise and 
nonrigid motion, and agrees with the principle of the graceful 
degradation[l 11. 

(c F r a m e  31 (d)  F r a m e  4 6  

(e l  F r a m e  6 1 (1) F r a m e  76  
Fig.4. The m v e r y  of a Cpoint nonrigid object ( x-z plane ). The object is 
rotated by 2 d e p  at a frame. 

We have described the utility of a incremental approach for recovering 
3-D structure and motion of rigid as well as nonrigid objects from a 
sequence of images. The basic idea is to successively estimate the 3-D 
information by using the constraint about the nature of motion, i.e., 
smoothness-of-motion. The use of a longer sequence can meet the two 
requirements: robustness to noise and ability of coping with nonrigid 
objects. A focus of our current work is the mathematical analysis of the 
scheme. 
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