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ABSTRACT 
One way to perform registration and alignment for machine 
assembly is with respect to precisely located landmarks, called 
fiducials. that are located by machine vision means. For 
applications such as elearonics assembly, where densities are 
high and tolerances must be low. the precision by which the 
fiducials are located affects everything aligned relative to them. 
Because of s~a t ia l  sam~l ine  effects. differenllv shaoed fiducials . " . . 
can be measured with different levels of precision. In past work 
we have determined and mmpared the minimax precision error 
for simple geometric shapes, and extended the results to 
pmpose a cmcentric pattem as having desirable qualities of 
high location precision and rotational invariance. We reiterate 
this work, and extend it to examine the performance of the 
concentric fiducial as a function of diameter, number of rings. 
noise, and ring spacing. 

1. Introduction 

Electronics assembly, robotics manipulation, and many 
other manufacturing applications, require precise regismtion to 
assure proper positioning and alignment One way to perform 
registration is to position eve-g with respect to one or 
more landmarks. calledfiducd markr, or simply fiducds. For 
the elecvonics application, fiducials are positioned in precise 
and known locations relative to circuit mces. Then regismtion 
is performed relative only IO the fiducials, independent of any 
imprecision of absolute positioning on the machine. In this 
paper, we reiterate past work [I]. on determining the minimax 
precision of simple geometrically shaped fiducials. and extend 
our examination of a concentric pauem, which was proposed in 
[2] as having desirable fiducial charaderistics. 

In this paper, location is measured by the centroid 
calculation. Because lhis measunment is performed on 
spatially sampled data, there may be a difference between the 
w e  (unsampled) centroid location and that measured from the 
pixels. The Euclidean distance, measured in units of pixels. 
between the m e  and measured centroid of a fiducial is called 
the precision error. There are other methods for determining 
location. which are reviewed in reference [2], but the centroid 
calculation has an advancage that it is simple and fast. Besides 
work on regismtion. there is also a body of work in the area of 
subpixel precision that is applicable to this paper. Many of 
these papers have also been referenced in [2] but for 
completeness we mention reference [3] on imprecision regions 
(called "locales") due to spatial sampling. references [4-51 on 
digical disks and rings, and a more recent paper [6], dealing 
with the effects of noise on locale shape and size. 

2. Shape and Size of Simple Ccome(ric Fiduclals 

In an earlier work [I]  the subpixel registration precision of 
simple geometrically shaped fiducials was studied. Using 
analysis and experiment, the maximum error in the centroid 
due to spatial sampling was examined for different shapes and 
parameters. For completeness, we summarize this work here. 

For prposes of analysis and experiment. the image is 
assumed to be binary. The binary images a n  created by 
assigning a 1 to a pixel p(x.y) if its center is found to be within 
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the analog fiducial region, and 0 otherwise. For determination 
of the effeas of sampling. the center of the concentric fiducial 
was shifted uniformly within (0.0) to (0.5.0.5) at increments of 
0.01 pixels in x and y. The maximum of the errors for all 
(50x50 = 2500) shifts within this region is found and recorded. 
To test the effects of size, a dimension of the fiducial is 
incremented in 0.25 pixel steps over a range of 2 to 22 pixels. 
and the chanae of enor is examined. - 

Results in Figure 1 show the precision error ploued against 
the size (sidelength for square, vertical diagonal for diamond 
with other diagonal fixed. and diameter for circle). It can be 
seen here, and is explained in more detail in references [I-21. 
that. while the precision e m r  for the square is at best, 0.25 
pixels, both the diamond and circle have errors that decrease 
with larger s k  While none of the plots decrease 
monotonicallv. that of the diamond has vew larae deviations . . 
from minimum whereas the circle has s m d e r  12 maxima. 
This non-monotonicity in the decrease of the error curve is due 
to the spatial sampling effects between the Cartesian grid and 
the continuous shape. For the diamond shape, rotation of a 
fixed-size shape produces similar effects. In the following 
sections. we choose to develop and expand upon use of the 
circular shape as a fiducial because of its relatively small and 
lowdeviation error as shown in Figure 1, and because its shape 
is rotationally invariant. ::I 
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Figure 1. Maximum sampling error for the centroids of the 
square (solid line). diamond (dashed), and circular 
disk (dotted), over different lengths of sidelength, 
vertical diagonal. and diameter, respeaively. 

3. Centroid Calculations and the Concenlric Fiducial 

In this section, we review the development from circular to 
concentric fiducial. This development is made by modifying 
the centroid calculation method. The most smightfonuard 
method of centroid determination is just to find the average of 
the I -pixel locations. (M, My): 

Knowledge of the fiducial size and shape can be exploited 
to improve the measure. Consider that it is not necessary to 
sum all the pixels within the fiducial. instead, with knowledge 
that the disk is filled (completely I-valued), the edges can be 
found, and the same centroid calculated just from these edge 
locations. For the edges of x-runs scarting at x,(y) and ending 
at x,(y) for rows of y. the centroid and area can be calculated: 



When the centroid is determined from equation (2). the 
inside pixels are not used. Therefore. we can change the values 
within the disk edges without affecting this centmid 
calculdon. We take advantage of this to change the inside 
pixels in such a way as m improve the estimate of the centroid. 
It was shown in reference [2] that the variance of the centroid 
calculated o v a  greater than one disk is smaller than that on a 
single disk (where the maximum diameters are the same). 
Adopting the philosophy that "the more fiducials, the beuer". 
we insert into the original disk, more disks, all concentric, of a 
sequence of uniformly increasing radii from the inner to outer 
disks, and of alternating 1.0 values, as in Figure 2. We 
daermine the mtroid of each disk. &g them as fined 
either with 1 or 0 values. Then the weighted average of these r 
centroids is found, and said to be the antroid of the concentric 
fiducial. From reference [T, where the variance is shown to 
decrease linearly with increasing disk diameter. we choose to 
weight h e  moments of each disk propodonally to their 
respective diamam, d(i). Therefore, we define the centroid for 
the combination of disks in the concentric pattern as, 

where M.(i) is calculated as forM, in equation (2). 

- 

Fi y r c  2. A fiducial with three rings can be thought of as the 
concu~tric superposition of all the disks. The area of 
the fiducial is that of the largest disk. but the 
effective area is the sum of individual disks. 

The advantage of this concentric configuration is that more 
fiducials have been added but all addilionnl d i sh  are 
comined in rhc arca of ~ h c  original dirk When each ring of 
the concentric fiduaal is amsidered as a filled disk, we refer to 
the total area of these disks as thdt effective arca, Ad. The 
effective area for r disks is. 

AC = i - I  S * ( i )  = i-I z 7 [ ( i j ~ - x e b ) + l ]  I . (4) 

For a fixed diameter, d, the incluse in effective area with 
the number of rings results in a dccrurse of effective variana. 
We show this below. For a concentric fiducial of r independent 
disks. the effective variana is. 

r 11 

where oi  is the variance of each disk. It is shown by Monte 
Carlo simulation in [7] that the variance of the centroid 
estimate for a single disk is af = k I d, .  w h m  k is a constant. 
For the outer ring whose diamaa is d. the variance is a' = hi. 
?herefore expressing the variance for each ring with respea 10 
that for the outer, 

Substituting this in equation (5). 

Substituting for di = (2 i -  I)d I (2r- I), and simplifying. then 

The effective variance, normalized by the variance for the outer 
disk. is ploued in Figure 3. It can be seen that the effective 
variance is always less than or equal to a', and that it decreases 
for larger r with the inverse relationship approximately 2/ r. 
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Figure 3. The plot shows that the variance decreases with the 
number of rings, where the normalized variance is 
2=02,1a'. 

4 Concentric Ring Diametem 

In Section 3. the assumption was that the rings were spaced 
uniformly apah In this section, we examine whether the 
relative spacing between rings has an effect upon the error in 
the centroid measurement. We extend results of the one- 
dimensional case examined elsewhere (in a currently 
unpublished paper) to this twodimensional application. and 
test the different ring spacings in the next section. 

If a onedimensional cross-section is taken from the center 
of a concentric fidudal, this yields a sequence of nuns of 1s and 
0s for each ring. Consider first a continuous fundion.f(r), re R. 
having a sequence of 1 - ~ n s .  ((lo,ll),(ll,l,). . . . , 
(li-l .li). . . . .(I,-, .),)I. Assume that this function is first 
displaced to f(z -3, then sampled to obrain p(z), xe Z We wish 
m examine the precision by which the shift F (the shift in the 
cenuoid) can be estimated from h e  sampled sequence. In a 
currently unpublished work, it was shown that, given f (2 ) .  such 
that I, -ti-,  > 1, the displacement can be determined within a 
maximal uncertainty interval given by, 



The criterion of I i - I i - ,  > 1 guarantees that each ring is 
separated sufficiently that they can be differentiated. We call 
this. "topology preservation". Therefore in quation (9). the ri 
are integer lengths thrt can be arbitrarily chosen after meeting 
this topology preservation requircmmt To extend these results 
to the two-dimensional case, each adjacent disk should be 
spaced ri +i /  ( r +  1 ) apart, for inner to outer disks, i = 1 .  . . . .r. 

One m a r k  on the similarity of the one-dirnmsional 
approach with the concentric estimation methd in this paper. 
is that the "topology-preservation" requinment is analogous 
to the approach of treating the concentric fiducial as 
superimposed disks. If the centroid is calculated just of all the 
I -values in the concentric fiducial (that is, without considering 
topology) then the estimate will actually have poorer location 
precision (due to fewer pixels) than for the filled disk; but when 
topology is retained (that is. each disk is found from its 
associated ring) then the effective area is increased. and the 
precision of the centroid e s h a t e  incmses as well. 

5. Concentric Flducill - Experiment.l Raults 

Tests werc made on the performance of the concentric 
fiducial for subpixel translations on a sampling plane, and with 
noise. For these, the centmid was measured fran the sampled. 
binaly image, and the Euclidean distance between the true 
centroid and the measured centroid was calculated, and called 
the error. Two sets of tests were carried out In one, a 
noiseless fiducial was shifted in subpuel increments on the 
sampling plane, and the error due to sampling determined. In 
the other, noise was added to the image, and the error due to 
this noise found. 

For the determination of the effects of sampling. the center 
of the concentric fidudal was shifted uniformly within (0.0) w 
(0.5.0.5) pixels at incments  of 0.01 pixels in x and y, and the 
maximum error was found as described in Section 2 
Concentric fiducials of three outer diameters, 
d ,  = (50,100,300)~ and with a number of rings. 
r = {1.3.5, .. . ,291, were tested. 

The results are plotted in Figure 4. Note first that. as the 
number of rings is increased, the maximum error generally 
decreases. Also, for larger diameters, the error peaks are 
generally lower. However, also note that the plots are not 
s m d .  We will discuss these apparent anomalies as well as 
the general vends in Section 6. 
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Figure 4. Maximum sampling error for concentric fiducial. 
Solid line is for outer ring size of 50, dashed for 100. 
and doued for 300. 

For the second set of tests. the fiducial was centered at 
(0.0).  and noise introduced with the following characteristics. 
At each pixel location. noise was added with probability P of 
seuing the value to 1 or 0. This yields a random spatial 
distribution of I-valued noise outside the fiducial area, and 0- 
valued noise within the fiducial area. A range of noise 
probabilities was tested, but shown here is only P = 0.1. After 
the noise is added, a simple morphological hlter was applied to 
reduce isolated 1 or 0 noise, and to smooth spun and 
indentations on boundaries. Thus. the addition and reduction 

of noise leaves rings with noisy boundaries. For each test case. 
15 images were taken with different random noise. The rcsults 
show the average and the standard deviaion of the maximum 
errors over the IS sample images of each case. 

The results are plotted in Figures 5 and 6. They indicate 
that: i) both the error and standard deviation generally decrease 
when the number of rings increases; ii) error is generally 
smaller for larger diameters; and (from results not shown here) 
iii) h u e  results are more pronounced for higher noise 
probability. Although the general trends are clear, the results 
again are not monotonic, and this will be discussed in the next 
sedon. 

diameter = 300 
P(noise) = 0.1 

-- 
-0 

----- std. dev. 

no. rings, r 

Figures. Plot shows average and slandard deviation of 
maximum error versus number of rings for 
concentric fiducials of diameter 300, with added 
noise 10%. 
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Flgure6. Plot shows average of maximum error versus 
number of rings for cmcentric fiducials of diamaers 
100 and 300, with added noise 10%. (Note thar the 

1 
plot for the diameter of 100 is only up to 9 rings. 
?his is because pixel spacing between rings becomes 
too small to preserve topology.) 

To test the effects of ring spacing and diameter. the error 
was measured for different ring widths. Error for concentric 
disks was calculated and plotted for diameters of: 
{ (2i  - l ) A d +  i I ( 1  + r ) ) ,  the oplimum spacing for the one- 
dimensional case discussed in Section 4; ( (2 i  - I ) A d + l l  2).  
the optimum diameter for a single disk cross-section; and 
( (2i  - 1 ) ~ d ) .  the diamder giving the wont error for a single 
cross-section (fran the results for a square in Section 2). The 
maximum error due to sampling was found for the noiseless 
fiducial that is shifted by 0.01 pixel increments within (0 .0)  to 
(0.5.0.5). 

'Ihe results are shown in Figure 7. The plots for diameters 
( (2i  - I )Ad+i  I ( I + r ) ) ,  and ( (2i  - I ) A + l l  2) are similar, and 
it would be difficult to say whether one of these diameter 
spacings is better than the other. For greater than one ring. 
however. integer diameters ( (2i  - 1 ) ~ d )  give noticeably worse 
error. These results will be discussed in Section 6. 

6. Diseu.sion and Summary 

The data indicate the following general trends for the 
concentric fiducial: 
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Figure 7. Maximum sampling errors for different ring 
spacings versus diameters for fiducial with one ring 
on top and five rings on bottom. Diamders are 
plotted: {(2i  - I)Ad+i I ( l + r ) )  (solid). 
{(2i  - l)Ad+11 2) (dashed). and {(2i  - 1)Ad) 
(dotted). 

i. as the diameters are increased, the error due both to 
sampling and additive noise decreases; 

ii. as the number of rings is increased, the error due both to 
sampling and additive noise decreases; 

... 
lu. as the amount of additive noise is increased. the mnds of 

(i) and (ii) are more pronounced (this result was not 
shown here. see [2]); 

iv. as the number of rings is increased, the standard 
deviation of the error measurement due to additive noise 
is decreased; and 

v. ring diameters of { ( Z - ) A d + l ( l + r i ) )  and 
{ ( Z  - l ) A d + l l  2) yield similar errors, and integer 
diameters worse errors. 

Although the general trrnds are as above, in no case are 
they monotonic For the plots of error due to additive noise, 
there are local peaks and valleys. An explanation is that some 
correlation exists between the sampling resolution and 
concentric pauem at certain number of rings and diameter 
sizes. This is similar to the analytical explanation for the peaks 
in error for the diamond shape ploued in Figure 1. However. 
the relationship between the circle and the sampling plane is 
non-linear for different shifts. diameters, and number of rings. 
and has so far defied analysis. A mathematical explanation for 
the results of Section 5 is essential to understanding and 
designing the optimum concentric fiducial, and it is this 
problem that most wanants future research. 

For the plots of error due to sampling only. the general 
trends are observed as listed. However there are instances of 
more marked non-monolonicity than for the case of additive 
noise. We propose that this is due to the sampling effects as 
mentioned above.. 

The results in Figure 7 show that differmt diameters of 
{(2i - l ) A d + l l ( r + l ) )  and {(2i  - l ) A d + l l  2) have similar 
errors. However, while the relative diameter spacing does not 
seem to be critical, it seems that when all disks have integral 
diamaen, the maximum error is higher. This is probably due to 
the same effea as for the square with integral sidelengths. The 
effect is smaller for the circle because the sides are 
approximately perpendicular to a sampling axis for a smaller 

portion of the sides than for a square (whose sides are exactly 
perpendicular for the entire sidelengths). Again, this argument 
requires analytical verification 

As is evident from the above discussion, efforts to describe 
the behavior of concentric disks in a sampling plane have so far 
escaped our mathematical explanaticm. The difficulty of the 
problem is also evident from the literature. This problem is 
broached in [7], but due to the difficulty of analysis, no general 
twodimensional relationship was obtained. In [4], a discrete 
disk is analyzed, but this is done only for the more restricted 
case where the center is fixed on a sample point In [3,8], it is 
evident that their l o d e .  describing the region of imprecision, 
becomes more complex with increased region samples. The 
problem appears to be non-linear because the circular edges of 
the disks are uncomlatcd with the Cattcsian sampling plane. 
In any case this problem merits future effort, 

In summary, it has bccn shown that the circular fiducial 
used for machine vision registration can be extended to a 
concentric panem that m p i e s  the same area, but yields better 
centroid estimates. A method of centroid calculation was 
shown that tnats the fiduaal with r concentric rings, as r 
separate but concentric disks, thus yielding a larger effective 
urea and a lower effective wriance. Experiments were 
performed to find the error in the antroid measurement due to 
additive noise, and due to sampling quantization. These 
showed that the centroid measurement was generally more 
scarate as the outside diameter and number of concentric rings 
increased. Although the benefits of this shape and method for 
registration have been shown by experiment. a challenging 
problem still remains to explain by analysis some non- 
monotonicities in the results. 
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