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ABSTRACT 
There is a tradeoff between noise insensitivity and 

accurate position in edge detection. This paper 
suggests an adaptive algorithm which takes advantage 
of both LOG and NonLL filters. Several masks of 
different size cover a wide band of frequencies under 
the supervision of the nonlinear Laplace filter. 
Calculation is dramatically reduced by thresholding. 
Zero-crossings are tested simultaneously with 
convolution and interpolated with subpixel accuracy. 

INTRODUCTION 

The earliest and most popular spatial 
differentiation in visual information processing began 
with the gradient operator. The absolute value of the 
first derivative is maximal near the position of the 
steepest descent where the second derivative 
(Laplacian) crosses zero[Davis75]. The Laplacian 
operator was nearly abandoned due to noise 
sensitivity and phantom edges when Kelly suggested 
a blurred Laplacian for retinal modeling of 
psychophysical results and Marr suggested Laplacian 
following multiple scales of Gaussian 
blurring[Daugman88,Marr821. Neural receptive fields 
take profiles resemble the Laplacian of 
Gaussian(LoG), which achieves the lowest bound on 
the joint entropy. It is equivalent to the minimal 
product of the varriances in both the spatial and the 
spatial frequency domain[Olshausen881. - - 
- The filter sensitivity is associatedwith the width 

of the central excitatory region of LOG. A large 0, 
corresponding to a large Gaussian filter, can be used 
to find strong edges with approximate position, while 
a small 0 can be used to obtain more detail edges 
with high positional accuracy. There is a tradeoff 
between noise insensitivity and accurate position in 
choosing the size of filter[Canny83].A further 
consideration comes from a computational point of 
view on the large Marr-Hildreth filter. Although the 
filters can be decomposed into seperate row and 
column filters, the calculation is still considerable 
high and there is another constraint requiring the sum 

of the resulting filter coefficients is zero. However, 
later work suggests that zero-crossings of the 
Laplacian are not the only features computed in early 
vision[Torre86]. Level-crossings, which result from 
convolution with a non-zero coefficient filter, are 
quite useful in detecting some special 
frequencies[DaugmanSS].The experiment discovers 
that a nonlinear Laplacian'filter(N0nLL) can greatly 
reduce the size of filter with high tolerance to noise, 
which means that the product of variances in both the 
spatial and the spatial frequency domain is smaller 
than the limit of LOG. It miy bepossible to separate 
automatically the noise response and the real edge 
response for medium and high signal to noise ratios 
using the threshold selection algorithm available, but 
it is hard to find an algorithm robust enough for 
images with low signal to noise ratio[Vliet89]. 

Another saving of calculation is obtained by 
reducing the sampling frequency,that is reducing the 
resolution. Convolution is done using a small filter. 
A subpixel edge detection scheme is used to recover 
the edges at the original resolution[Huertas86]. Its 
foundation is that human beings are able to recognize 
objects starting from a very crude outline[Vliet891. 

We suggest a scheme combining LOG with 
NonLL filters. Different size of LOG filters are 
chosen under the guide of NonLL output. Calculation 
is dramatically reduced by thresholding. Zero- 
crossings are tested simultaneously with convolution 
and interpolated with subpixel accuracy. 

FREQUENCY ANALYSIS 
OF LOG AND NONLL FILTERS 

The photoreceptors tend to have a central 
excitatory region, which takes a profile of Gaussian. 
Ganglion cell receptive fields have central/surround 
profile, which function as a Laplacian 
operator[GrirnsonSO]. Since both filters are linear and 
shift-invariant they can be combined into one filter, 
the LOG filter[Hildreth83], In two dimension, it is 



with Fourier transform: 
It is also noticed that the energy of the low 
frequencies is reduced due to extending wave peaks. 
That is to say, it reduces the energy of edges. 
Rosenfeld suggested a nonlinear low-pass filter, the 
mehan filter[Rosenfeld82]. Filtered output is the 
median value within the mask. 

Here w = 2 ~  f is a bandpass filter with a maximum at 
I 5  

0-- 
a (see Fig. lb). A different size of filter has a 

different width of the central excitatory region. 

Fig3. Amplitude-frequency response 
(Solid line: Gaussian; dashed line: averaging) 

Fig. 1 LOG filters(a) and their Fourier transfonn(b) 

For small values of 0 ,  LOG filter extract the high 
frequency edges in the image with high accurate 
position. But the ability to suppress noise is very 
poor. For large values of 0 ,  the LOG filter will 
extract the low frequency information. It can get rid 
of noise, for noise usually contains high frequency 
information, at the cost of poor positioning of 
boundaries. Fig. 2 gives two zero-crossing images 
with sizes equal 4 (a) and 17 (b) respectively. 

Fig.2 zero-crossings with filter size 4(a) and 17(b) 

Another approach to simulating the central 
excitatory profile is the design of a nonlinear 
Laplacian. Filtered with a low-pass filter, images are 
convolved with Laplacian operator by a nonlinear 
combination of neighborhood pixels[Rosenfeld701. 
One low-pass filter used in nonlinear Laplacian is the 
averaging filter. Fig. 3 gives the amplitude-frequency 
response curves of Gaussian filter and averaging 
filter. From the spectrum we can see that there are 
still peak values after the main wave, which means 
that there are still some frequencies passing through. 

Although it is difficult to give exactly the 
amplitude-frequency response characteristic, which is 
a function of distribution of intensity, two 
characteristics are obvious. One is that it preserves 
the energy of edges. Another one, according to the 
law of large numbers, is that it approximates the 
Gaussian function when the size of mask is big 
enough. 

IMPLEMENTATION OF ADAPTIVE 
FILTERING 

For an n x n neighborhood, we define a new 
nonlinear Laplace filter, NonLL, by 

where 

ddx*y) is an n x n square centered at (x,y), 

Cn(x''y') a.re scale coefficients for the position and 
median(x, y) is median value within n X n neighbors. 
This new filter performs smoothing and Laplacian 
operations in one pass. Edges are extracted by 
thresholding over min(gradmax, -gradmin). Fig. 2 
gives a picture (a) and its co-occurrence spectrum(b). 
From the spectrum, we can see the distribution of 
gradient. The diagonal elements construct the 
histogram of the image. The diagonal distribution is 
the distribution of gradient. Threshold is set by 



isolating the diagonal cluster sets. Only the points 
above threshold need to search for zero-crossings. 
Generally spealung, a large gradient corresponds to a 
high frequence edge. We choose LOG size after 
thresholding NonLL. Due to its symmetry, the 
discrete filter of equation can be rewritten as a 
combination of two separable filters: 

It can be seen from Fig. 2(b) that a lot of 
calculation is saved by thresholding. m and n are 
uuncated to N giving a FIR[Oppenheim75], under the 
constraint 

0 m 
where h l  (k) and h 2  (k), and different sizes of 

filter respond to different value of gradient. It is 
worthy mentioning that if this algorithm is used for 
testing level-crossings, equation (6) changes to 

0 
Here a are level constants and have the same 

sign for all filters. 

ZERO-CROSSING DETECTION AND 
INTERPOLATION 

All zero-crossing detection algorithms used in the 
references were proceeded after convolution. It 
obviously reduces speed. We found it not necessary, 
for we only need to test zero-crossings with 180 
degree. Fig. 4 gives the data structure and illustrates 

testing strategy. For an n n image, we define an 

array with n+l elements to hold a testing boundary. 
Directions 8, 1, 2 and 3 are tested for each pixel, as 
indicated in Fig. 4(a). After being used to test zero- 
crossings, the convolution result is put into the left 
top of testing boundary as the arrow points out. The 
test boundary shifts one element right each line and 
all n+l elements are wrapped up for continuous 
testing. 

(a) neighborhood 
of a plxel 

(b) zero-crossing detectJon 

Fig.4 Data structure for zero-crossing detection 

Because large 0 LOG filters are required to 
suppress noise, it is very time-consuming to do 
convolution. However, we can reduce the resolution 
of images and use filters of small 0 upon low 
resolution images. Then we use a subpixel edge 
detection scheme to recover the edges at the original 
resolution. Subpixel values of zero-crossing 
localization are obtained by a polynomial 
interpolating function. All convolutions are 
performed using floating-point arithmetic in our 
implementation. The approximate interpolating 
function is written as 

where f(x, y) is the value of the LOG filter output. 
The (x', y')s are used aspoints for later interpolation 
which we suggest in the form 

The subpixel accuracy can be any resolution, but 
the higher resolution, the lower the accuracy of 
approximation. 

CONCLUSION 

Canny has distinguished three performance criteria 
in judging the ability of an algorithm to find an edge: 
good detection, good localization and only one 
response to a single edge. We give the fourth 
criterion, execution speed. Our edge detector 
performs well over these four criteria. It increases 



speed more than ten times and can work at very low 
signal-to-noise ratios, as shown in Fig. 5 
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Fig. 5 Results: (a)threshold output; @)zero-crossings 

Recent information processing in visual systems 
has shown that zero-crossings in the band passed 
signals do not capture the necessary information in 
some patterns, so level-crossings are suggested. Our 
algorithm can be used for detecting level-crossings 
without any big changes. Fig. 6 gives a texture 
image generated by Daugman, its zero-crossings and 
level-crossings. 

Fig. 6 Texture irnage(a) 
its zero-crossings@) and level-crossings(c) 

Extracting more information from images is a 
topic of further researchporat88]. 
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