
MVA'SO IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo 

OBJECT MOTION IDENTIFICATION 
FOR OBJECT RECOGNITION 

Vito Cappellini, Alberto del Bimbo, Paolo Nesi 

Facolta' di Ingegneria, Dipartimento di Sistemi e Informatica 
Universita' di Firenze, Via S. Marta 3,50139 Firenze, Italy 

ABSTRACT 

Motion analysis has been used for a long time in vision to 
derive the 3-D shape of the moving object from the image 
sequence as well as to derive the motion law for prediction 
and tracking. However, motion can also be regarded as a 
property of the object and hence employed for improving 
recognition. This is particularly useful when the form 
~rovides little or no h e l ~  in discriminatine between different 
hypotheses. In this paper, an approach isiresented in which 
motion descriptors are defined at different levels of abstrac- 
tion. Coarse descriptors refer to the motion of rigid objects. 
Finer descriptors model the motion of compoiite objects 
with coordinated moving subparts. Autoregressive models 
are used to provide motion descriptor estimations. 

1. INTRODUCTION 

The analysis of dynamic scenes has a long history in com- 
puter vision. Many researchers addressed such a task in order 
to recover the 3D object structures or to derive the object 
motion for predicting and tracking the object temporal 
evolution. Several approaches are available in the literature, 
leading to solve possibly complex sets of linear [l], [2] or 
non-linear 131, [4]. 151 equations. In most of them, typical 
assumptions are that the object is a rigid body and transla- 
tional and rotational motions do not change in the observa- 
tion window. The most noticeable techniques and results in 
this research area are reported in [6]. 
Obiect motion analysis has also been used for obiect clas- 
sification purposes.-1n this case, the job is to reason about a 
set of properties describing the actual object motion. To this 
end important results have been obtained in the ALVEN 
system for ventricular motion analysis [7], [8]. 
A different approach has been followed in [9], [lo], where 
motion features are regarded as properties of the object itself 
and used for improving classification. This can be helpful in 
situations where the form is not enough to perform recogni- 
tion (e.g. the case of night processing of different light 
sources, or of undefined shapes like smoke and clouds, 
where shapes areof nouse forrecognitionortheobject forms 
are not fixed). 
In this paper this approach is developed further. We want to 
define structures which model the actual object motion, and 
that can be profitably used in the classification task. 
If the behavior is considered as a property of the object, 
several descriptions are possible depending on the level of 
abstraction at which the object is regarded. 
Coarse descriptions refer to a view of the object as a single 
whole. Examples are viewsofobjects as blobsorrigid bodies 
without components. In this case, motion parameters can be 
simply estimated by observing the centroid movement. In 
the present approach, the object motion is modeled through 
an autoregressive model. The multidimensional field of the 
possible coefficients represents the allowed object motions 

and is used as a reference in the recognition task. 
Finer descriptions are related to modeling the movements of 
composite objects with subparts moving in coordinated mo- 
tion. In particular, the following factors have to be taken into 
account: 
- identification of the joints in the overall object body; 
-modeling of the time-varying relationships among the 

subparts and of the constraints; 
- modeling of the coordinated motions. 

The reference model has to collect both the allowed motion 
patterns of the joints and the allowed pattern corresponden- 
ces. Motion descriptors are stored as features in the object 
models. Each model has to give its confidence of matching 
the observed behavior. 
Apart from these descriptions, we have to consider that 
objects a exhibit different behavior depending on the context 
in which they are observed. Therefore, a useful approach is 
to partition the set of the allowed motions according to the 
context information. 
This has been proposed in [9], by adopting a specific object- 
based infommation model. 
This paper is organized as follows: In Sect.2 the coarse 
model used to describe motion of simple objects is presented 
with a brief description of how behavior matching is sup- 
ported. Sect.3 contains the corresponding description for the 
case of composite objects with subparts in coordinated mo- 
tion. Some considerations related to confidence updating as 
time progresses are expounded in Sect.4. In Sect.5 an ex- 
ample of behavior-based recognition for simple objects is 
shown. Conclusions are given in Sect.6. 

2. MOTION DESCRIPTORS FOR SIMPLE OBJECTS 

Generally speaking, in a Cartesian coordinate system, as that 
in Fig. 1, the 3-D motion fiom a generic point P(r) (x,y,z) to 
P'= P(t+A t )  (x' ,y1,z') ,  under translation and rotation is 
described as: 

andthe following relationships hold, between the projections 
of P and P' on the image plane: 



measured y lues  where: 
a) rii are the elements of Rr and represent the entity 

rotational motion components, defined as a function 
of cos 8, sin 8, cos 0 ,  sin @, cos W, sin y ~ ;  

b) hx,Ay,Az represent the translational motion com- 
ponents; 

C) (X,Y) and (X1,Y'), are the coordinates of the projection 
of P andP' on the image plane normalized with respect 
to z and z' . 

d) Lf is the camera focal length. 

Fig.l - Cartesian reference coordinate system 
for a simple moving object. 

In general, the 3-D motion estimation problem can be s u b  
divided in two steps. The first step is to estimate the object 
displacement in the image space by matching several points 
of the object in consecutive frames. 
These points are used in order to solve for the unknown 
parameters 0 ,  8, yt , hYhr  , AY/~z , in the above equa- 
tions, being Az the scale factor. 
As observations can be noisy, estimation techniques are used 
as a second step to derive motion descriptors with sufficient 
accuracy. A rigid object undergoing rotational and transla- 
tional motions can be modeledas adiscrete dynamic system. 
An extended Kalman filter was used to this end in [5]. Even 
a good precision is obtained, convergence is reached only 
with a great number of frames. 
Here we was used an autoregressive model with minimum 
square error (MSE) filter to perform the estimation of the 
motion descriptors. Experimental results have proven that 
this technique performs well with fasterconvergence. In this 
case, the model is: 

(2.3) s ( t ) = a l s ( r - A t ) + a : ! s ( t - 2 A t ) + . .  
. .+ans ( t -nAt )+u( t )  

where: 
a) s(t) is the vector of measurable parameters,and should 

include parameters such as ~m,~m~m,~m,0m,&m, 
em,em.~m,$m, 

b) ai are unknown matices (to be estimated) that should 
be regarded as descriptors of the actual object motion. 

Estimated descriptors model the behavior of the o ject in the 
observation window. At each instant t the set 1 (t) of the 
coefficients ai, is estimated through the MSE filter (see 
Fig.2), on the basis of the previous values and of the error 
E(t-I), E(t) being defined as: 

Some initial steps are usually needed to stabilize the coeffi- 
cients and to initialize the MSE filter. However, the speedof 

autoregressive 

a(t-At) 

. . " .  
MSE filter 

Fig.2 - Autoregressive motion model with MSE filter. 

convergence weakly depends on the initial guess for the 
unknown parameters. 
In order to perform recognition by behavior, the estimated 
descriptors are then compared with those stored in the object 
models. In particular, each model stores a set M of reference 
patterns. which describes all the allowed motions for the 
specific object, in the context selected. M is defined as: 

with: Aj = {ai li = 1 , n } 

and: a i={ak, lk=l ,p ;  l = l , p }  

where m is the cardinality of the parameter field, n the order 
of the modeling motion equation andp the dimension of the 
space vector. 
In practice, only the bounds of the multidimensional field 
M of the motion descriptors are stored into each model, in 
the form of a fuzzy membership function. Thus, the con- 
fidence 01 pm I 1 of matching the observed motion, is com- 
puted by each model through the embedded fuzzy-matching 
procedures. 

3. MOTION DESCRIPTORS FOR COMPOSITE 
OBJECTS WITH COORDINATED MOVING 
SUBPARTS 

In this section we will discuss how composite objects with 
coordinatedmoving subparts can be described and how these 
descriptions should be used for recognition. 
In this case, a distinction has to be made between the object 
body and the other moving subparts. We will assume that the 
object body corresponds to the subpart that exhibits a minor 
variance of its displacements. This classification can be 
easily obtained after few frames. In addition, joints connect- 
ing two or more subparts have to be considered. Every joint 
can be regarded as a point with several grades of freedom. It 
can be identifiedas theobject point which remains fixed with 
respect to the other points of the moving subparts. 
For the following discussion, several reference coordinate 
systems are defined (see Fig.3). One is centred in the centroid 
of the object body (center of motion). If the composite object 
has n subparts, n - 1 coordinate systems are also defined, 
centred in the subpart joints. Finally an absolute coordinate 
system centred in the camera focus is defined. 
As to the motion of the object body, the same approach 
followed in Sect.2 can be used for the evaluation of displace- 
ments and motion parameters, as well as for the estimation 
of the global motion descriptors. 
However, some descriptors of the relative motion between 
subparts are also needed. These are a synthetic repre- 



is given by: 

Fig.3 - Cartesian reference coordinate systems 
for a composite object with moving subparts. 

sentation of the relationships between the object center of 
motion and the joints. 
These relationships are modeled according to general trans- 
formation matrices in homogeneous coordinates. In par- 
ticular, if the generic joints Ji, Ji + 1 are chosen, the following 
equations hold: 

where: 
a) F i j + ~  = R i,i+I Tij+I 
b) R is the composite rotation matrix for the generic 

rotations 0 , 0 , yt with respect to the z, y and x axis, 
respectively: 

being: Cw = cos(v) Sv = sin(v) Ce = cos(0) 
Se = sin(0) Co  = cos(@) S o  = sin(@) 

c) T is the translation matrix for the generic translations 
dx , dy , dz with respect to thex,y and z axis, respec- 
tively: 

r 1 0 0 h i  

Depending on the type of the joint, R and T have a different 
appearance. 
If joints are rotational with respect to the z axis, and the x 
axis of the generic Ji+l-based coordinate system is con- 
strained to be on the rotation radius of the joint Ji, (this 
hypothesis will be assumed throughout therest of the paper), 
then 0 = 0 ,  yt = 0 ,  dy = 0 ,  dz = 0, hold, and hence the 
mamx F reduces to: 

r co -SO o ~ C O  1 

The relationship between the system of coordinates located 
in the center of motion and the absolute system is also 
modeled  by the  t ransformation F. Therefore ,  if 
Pa (x,  y , z )  is a generic point in the absolute reference 
system, the corresponding PC in the other coordinate system 

The motion model for the relative movements between the 
joints has to take into account, for each joint, the set of the 
allowed patterns for the rotation angle 0 and, possibly, 
the angular speed 6 . 
In our model, the DFT (Discrete Fourier Transformation) 
samples of the angles and of the angular speed, normalized 
with respect to their mean values (thus independent of the 
amplitude) are used. Both modules and phases are stored. In 
Fig.4 examples of patterns of the angles and of the cor- 
responding DFTmodules for the joints of a walking-man leg 
are reported. 

anqles 
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Fig.4 - Patterns of angles and of the DFT modules 
for the joints of a walking man leg. 

Moreover, the ranges of the possible angle amplitudes and 
angular speeds are included in the model, as well. 
In order to use the behavior forrecognition observed patterns 
are normalized and operated with DFT for each joint. These 
are then compared with the descriptors stored in the models 
selected. Several matching steps are performed. 
First, the angle and angular speed amplitudes are checked 
with the corresponding ranges in the models. If the con- 
fidence is large enough, the inspection of modules of the 
DFT samples is carried out. Finally, phases are compared 
anddisplacements are evaluated with respect to the reference 
values. If the displacements are the same for every joint, this 
is assumed as a measure of the coordination of motions. 
Each model C at every sampled instant r ,  computes a global 
confidence which is given by: 

where: 
a) woo,, w&,,, wo,, woph are appropriately defined 

context-dependent weights; 
b) po,(C,t) takes into account confidences evaluated for 

every joint with respect to the angle amplitudes; 
C) p&,(C,t) takes into account confidences evaluated for 

every joint with respect to  the angular speed 
amplitudes; 

d) w,,JC,t) takes into account confidences evaluated for 
every joint with respect to the DFT modules of angle 
amplitudes; 

e) m,(C,t) takes into account the differences between 
th~phasedisplacements with respect to the storedDFT 
phases for the joints. 



4. CONFIDENCE UPDATING 

At each frame sample, for each observed object, there is a 
set of confidences p(C,r) that are computed by all the selected 
models, being: 

{~(cJ )  if r(C,t) 2 a 
p(C9t) = 0 else 

where a is a task-dependent threshold. 
Progressing in time, as new confidences are evaluated, old 
ones have to be updated. This is made according to: 

where: 
a) kvs(t+At,C) = h [~(C,t),p(C,t+At)l 

[;c,~) u p(C,t+Ar) 
b) pin~(t+At,C) = if p(C,t) and p(C,t+At) + 0 

else 

with h the fuzzy averaging function and u defined accord- 
ing to: 

The models that are always matched have maximum global 
confidences. Models build their final hypotheses incremen- 
tally. The understanding process terminates when some 
hypotheses with the required confidence level are reached. 

5. AN EXAMPLE OF RECOGNITION BY BEHAVIOR 

In the following, a simplified applicative example is 
presented, in which adynamic analysis is camedout in order 
to classify vehicles coming out of paytoll stations on a 
highway, at night- time. 
In this example, light blobs are tracked in a sequence of 
frames and, as shape cannot give useful information, only 
the entity behavior is used for recognition. 
In this case only the coarse motion representation is 
employed, according to the approach described in Sect.2. 
As the operating context is restricted, only models of objects 
that can be present at paytoll stations on highways at night- 
time are used for comparison. This limits the investigation 
to some vehicle types (e.g. cars, trucks), excluding others 
(e.g. bikes). 
The context selected implements a simplified system of 
equations with respect to equations (2.1) and (2.2): the angle 
8 between the motion direction and camera axis, and the 
distanced between the vehicle trajectory and the TV- camera 
focus along the camera axis, are assumed to be known and, 
therefore, the grabbed space displacements at the time r, 
s(t), can be directly adjusted according to: 

where P(t) is: 

being Np&) the measured distance (in pixels) between the 
observed point and the vertical axis measured at the time t, 

Np- the resolution of the sensor, Lf the camera focal 
length, Weed the TV camera CCD sensor width. Weed, 4 and 
Npi- are hardware-dependent factors. 
In this case a secondorder autoregressive equation with null 
input (from (2.3)) is used, where ai ands(t) are scalar values: 

The second order motion equation has been adopted for the 
sake of simplicity; however, it has been proven that higher 
order equations do not give significantly better results in this 
applicqion. For each motion coefficient ai, the estimated 
value ai, is evaluated using the MSE filter as: 

A deti C 
a ,  (t) = - 

det C 

where : 
a) G is the 2 x 2 matrix of the elements gjj defined as: 

gjj = s ( t - ( k + i ) A t )  s ( t - ( k + j ) A t )  
k = 0 

i = 1 ,  2 ;  j= 1, 2 
being no the number of observations. 

b) deti G is the determinant of the matrix G where the 
column i-th has been replaced with the column vector 
V with elements vi : 

i = l ,  2 
Coefficients are stabilized in few steps. 
The following approximating membership functions ( 
P C A R ( ~ I , ~ ~ )  , ~ T R U C K ( ~ I , U ~ )  ) with elliptic sections have 
been derived by observing the car and truck behavior in the 
'night-time atpaytollstation' context (5. la, 5.1 brespective- 
IY). 
These fuzzy-membership functions have been put into the 
'night-time-atpaytoll-station' models of cars and trucks, 
respectively, and represent their typical behavior in that 
context. 
The membership function for a truck has a different profile 
from that of a car. As can be argued, an overlapping is 
presented between the spaces of car and truck coefficients. 
Obviously, in the case of uniform motion, there is no way to 
discriminate between cars and trucks. 
The recognition was made under the assumption that light 
blobs are rigid objects, and the displacements measured 
between frames are small, so that we can keep track of spatial 
tokens from one frame to the next. 
Fig.5Ia shows one of the grabbed raw-images in the frame 
sequence. Fig.S/b depicts the corresponding binary scene 
after histogram filtering. Fig.51~ presents the results of the 
segmentation. Estimated motion descriptors and confiden- 
ces are shown in Fig.5Id for the observed moving objects. In 
this figure, the matching with the reference descriptor fields 
of car and truck models is also displayed. 

6. CONCLUSIONS 

In this paper, the problem of considering motion as a proper- 
ty of the object and of using this in order to improve the 
recognition process was discussed. Several issues have been 
addressed regarding definition of motion descriptors, the 
description of motion at different abstraction levels and 
support for the object models. 
An approach was presented in which motion descriptors for 
the observed object are estimated through an autoregressive 



Fig.5 - Recognition by behavior of vehicles moving out of a highway paytoll station (18th frame); a) raw image, 
b) binarized image, c) segmented image, d) estimated motion descriptors and matching. 



system and then compared with those stored in the object 
models. These are in the form of a fuzzy-membership func- 
tion which represents all the allowed motions for the object, 
in the context selected. Coarse motion descriptors are 
provided for global object motion evaluation, while a finer 
description is given when the object is regarded as composed 
of coordinated moving subparts. 
Experimented results have proven that this approach can be 
profitably used in those cases in which the form provides 
little or no help for recognition. 
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