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ABSTRACT 
This paper is concerned with surface reconstruction from stereo 

image data. We do not explicitly match left and right image points, 
but use a new formulation of Disparity Space geometry to recover 
the object surface in terms of very dense Intensity and Disparity 
maps. We introduce Disparity Space, and develop an approach using 
multiple matching primitives to form Local cost functionsfor which a 
Global solution is achieved using Dynamic Programming. Disparity 
resolution is controlled by scale factors, and the algorithm can be 
implemented in parallel. Experimental results with close range and 
underwater images are reported. 

1. INTRODUCTION 
Paqsive stereo has an almost instantaneous data capture stage which 
can usefully store large amounts of 3D spatial and scene descriptive 
information. This information can be recovered through an image 
inversion operation. Image formation and inversion involve both 
photometric and geometric processes. The geometric processes (lens 
distortion, camera position and orientation, relief displacement) are 
well understood, and result in an object point being projected to 
a particular image point, according to a known camera geometry 
model. The effects of the photometric processes (illumination, re- 
flectance) are more complicated as they are dependent on geometry 
and local photometric factors. The photometric model has not been 
considered in the present work. 

We seek to recover the spatial information through the calculation 
of very dense range and intensity maps using digital stereo image 
data. We can represent this image inversion procedure as: 

L ~ = 1 , , 1 , * 1 ) ~ R ~ = , , ~ , , * , )  ==+- { 2;;) 
that is, given an image pair L(I,,Y ,,,, ), R( r,,y,,, ,) of known cam- 
era geometry, we recover the surface as a Drsparity map D l x . v l  . . ,  
and an Intensity map We have developed a new appproach 
which applies global constraints to local cost functions calculated us- 
ing a number of different matching primitives for a range of disparity 
values. The global solution is obtained by applying geometric con- 
straints and Dynamic Programming (DP) in Disparity Space which 
yields a disparity value for every DP node. 

2. DISPARITY SPACE 
2.1 Introduction and theoretical background 
Consider a stereo setup as shown in Figure l a  with cameras of identi- 
cal geometric and electrwoptic behaviow mounted with their optical 
axes exactly parallel with separation b and principal distance f .  We 
introduce parallel image coordinate systems (XI, yl) and (xz, yz) for 
the left and right images respectively, and a 3D coordinate system 
(XYZ) centred upon a point midway between the two perspective 
centres ( similar to Horn 1986). As the images are parallel, the 
epipolar constraint means that a point located at  (XI, yl) must have 
a conjugate point located at (12, yz) where yl and yz are equal and 
z l ,  xz differ by an amount referred to as the disparity of the point.1 

Figure 1: Introduction of Disparity Space. All points located on 
the central image I, k have an associated disparity value d and an 
intensity value. We specify a coordinate (1, k) and then for all values 
of d within the disparity range, we calculate the matching function 
specified at  (xl ,  x Z )  The results are stored in disparity space. 

Figure 2: Disparity Space showing ( i l  - i 2 ) '  Using a single, simple 
matching function, there are many potential matches. 

The introduction of Disparity Space can be physically considered 
as the introduction of a hypothetical image located midway between 
the left and right images. We introduce such an image (Figure la)  
and define its image coordinate system as (I, k) which is parallel 
to (xl ,yl) ,  (xz,yz) and the (XYZ)  system. This hypothetical im- 
age consists of two separate images; an intensity image and a 
disparity image D(r,t) .  From Figure la, we have: 

The images are parallel and so conjugate image points (XI, yl), 
(xz, yz) will form an image point in the hypothetical image at  (I, k) 
with disparity defined as d where: 

XI, Az are scale factors and f, is the effective focal length. Expressing 
Iany sterapair can be transformed to parallel images, e v e n  the camera in- 

ternal geometry, and a minimum of five well distributed polnt correspondences 



area baaed primitives (Ackermann, 1984 ; Gruen, 1985) which is also 
reflected in the matching strategy. Area based correlation methods 
can produce a dense, highly accurate DEM, but require good initial 
values, have a small pull-in range and are sensitive to textures and 
slow intensity changes. Feature based methods rely on the extrac- 
tion of tokens, (eg edges) and a constraint satisfaction algorithm. 
There may be some assumption relating the extracted token to the 
object surface; problems with correctly detecting only significant 
features, tokenisation and surface interpolation. The method can 
quickly yield sparse depth information. 

It is apparent that certain image types respond more favourably 
to the use of certain matching primitives. Hence we suggest that a 
general purpose stereo system should allow flexibility in the choice 
of the local matching primitive. 

3.2 Combining matching primitives 
We consider every pixel to possess a set of matching attributes. 
These attributes can be flexibly defined, provided that-they can be 

Figure 3:  isp parity Space Stereo a) sum of local considered to act at a pixel; are considered as observed quantities 
costs. b) average intensity. c) LOG magnitude match. edge and the expectation of the matching function is zero in the event of 
orientation match e) intensity match. f ,  edge m a ~ i t u d e  match a successful match. The outnut of linear filters conforms to these 

conditions '. The output of any area based correlation function can 
the first and third of eqs (3) in matrix form, we have: be made to comply with these requirements, assuming the function 

is considered to act at  an evaluation node. We linearly combine 
(4) different matching functions together. Our implementation uses 

local.match.cost = A . [(Il - 12)2/ul + (811 - aIz)2/a2 + 
The inverse form is: 

(a2r1 - a2~2)2 /u ,  + ( o ,  - o,)2/ 0 4 1  (7) 

[ 2 ] = [ Y:: Y~F ] [ : ] (5) 1 for no constraint 
A = { Jd(l,k) - d(l,k-l) for epipolar s0111tion 

Further, 1 = f,.X/Z, k = f,.Y/Z and using eqs (2) & eqs (3): d - d l ,  for solution at  right angles to epipole 

(8) 
where A is an additional weight defined as the departure from the 

(6) adjacent solution node and ul, . . .u, are function weights derived 
from the variance of the individual matching functions. Figure 3 

Equations (4) and (5) represent a two dimensional f i e  trans- 
formation of the search plane defined by x l  and xz. The new (I, d) 
system we call Disparity Space and we note there is a corresponding 
value of (1,d) for every value of (x1,x2). The values of the X1,X2 
scale factors control the resolution of the disparity map and the 
separation of the evaluation nodes. 

2.2 Disparity Space stereo correspondence 
A continuous object surface must form a continuous surface in Dis- 
parity Space (Fig lc). Each point (I, k) defines a position upon the 
central image and hence a vector in space. This vector must cut 
the object surface as defined by eqs (6) and so the problem reduces 
to that of determining d for all points (I, k). Further, it is appar- 
ent that we can place limits on the possible values of d, that is 
dmin 5 d 5 dmax for all possible matches, and it is unnecessary to 
insist that the solution takes place along an epipolar line. We can 
specify any logical succession of (I, k), place limits on d and eval- 
uate all possible local matches. In this paper we have performed 
evaluation along and at right angles to the epipolar line. 

Disparity Space stereo reconstruction takes place as follows. For 
all points (I, k), local coat functions are evaluated for every legal 
value of disparity. This local matching will not always yield an un- 
ambiguous result (Fig 2), hence we need a global constraint in order 
to resolve the local ambiguities. This is especially true for images 
with slow intensity changes, poor surface texture or highlight. We 
need to consider the choice of local matching primitives and also 
how to achieve a global solution. 

3. LOCAL COST FUNCTIONS 

3.1 Choice of Matching Primitive 
The choice of matchingprimitives has received much attention in the 
literature and distinction is usually drawn between methods using 
feature based primitives ( Marr & Poggio, 1979, Hildreth, 1983) and 

shows a section through Disparity Space calculated using eq (7). 
In many stereo matching systems a set of disambiguating functions 
are introduced to prevent false matches. In our system, using such 
a rich variety of input data we do not need such disambiguating 
functions. Any local ambiguity is resolved by the use of multiple 
matching primitives and global constraints. 

4. DYNAMIC PROGRAMMING (DP) 

4.1 DP for Global Solution & previous work 
Dynamic Programming is a method for solving nonlinear optimisa- 
tion problems (Bellman, 1957), where the solution can be expressed 
as a combinatorial sequence of decisions based upon a small num- 
ber of potential solutions at  each evaluation node. Implicit within 
the algorithm is the concept of ordering whereby a solution pro- 
ceedes smoothly through a sequence of ordered subproblems within 
the finite search space. Each subproblem has only a small number 
of possible solutions, the solution to which is based upon compar- 
ing local cost factors associated with each possible solution to the 
subproblem. Each subproblem is solved in term, by choosing the 
optimum (ie least cost) solution. Possible solutions are defined in 
terms of transition rules which specify the set of possible decisions 
(or solutions) valid at each subproblem stage. A record is kept of the 
solution selected for each subproblem. Once the decision mechanism 
has traversed the search space, then the solution record is examined 
and the global solution is constructed by backtracking through the 
decisions of each evaluation stage. 

Bernard (1984), Ohta & Kanade (1985), Lloyd (1986), Lloyd, et a1 
(1987), Kolbl& d a  Silva (1988) have all used Dynamic Programming 
in a I d  (xl ,xz)  search space to solve globally by sections defined 
along epipolar lines. Additional constraints between epipolar lines 
were proposed by Ohta & Kanade (1985) and Lloyd (1986). 

'Note that there may be some distortion of the filter output (Niahihara,lQbJ) 
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Figure 4: DP transition rules. a )  Case A - simplest case for eqs (9). 
b) Case R - modified transition rules ( eg for A 1  = 1, Xz = 2 ) 

4.2 DP in Disparity Space 
The relationship between the 2D search space (1,d) and the (11, yl), 
(xZ, YZ) images is described by eqs (4) and (5). We can d e h e  any 
succession of I, k and then evaluate (XI, yl), (xz, yz) for a given range 
dmin 5 d 5 dmax. The local match cost is calculated according to 
eq (7) and stored (Fig 3). The global DP solution is determined by 
calculating the cumulative cost according to a set of transition rules 
and a suitable recurrence relationship. 

We have experimented with several sets of transition rules and 
recurrence relationships, defined to act along epipolar lines and also 
at right angles to these lines. Eqs (9) show one example of the 
recurrence relationship defined for the simplest epipolar solution. 
The associated transition rules are shown in Case A of Fig 4a 

5. EXPERIMENTS AND RESULTS 
Our approach has been tested with close range and aerial images 
(Baldwin & Yamamoto 1990). Owing to lack of space, only the 
close range results are reported here. Each image is transformed 
into an epipolar image (see Section 2.1), smoothed using a Gaussian 
filter and smoothed intensity gradient magnitude and orientation 
is obtained using a Sobel operator. Direction is quantised as 8 bit 
data. Finally, the original image is operated upon by a Laplacian 
of Gaussian (LOG) to produce the second derivative. Various filter 
sizes were tried for the LOG filter. All computations were performed 
on a Mips R3000 RISC machine with R3010 fpu. 
Venus Images  
These are the first images that we have used the algorithm with. 
Here we were interested in how the algorithm would cope with very 
slow intensity changes, smooth, almost featureless surfaces and high- 
light. As it is the stereomatching that we were interested in, no 
camera calibration was carried out. The disparity space solution at 
right angles to epipolar lines is shown in progress in Figure 5. where 
the high quality of the reconstructed central image is apparent. 
Note that the computed central image can be fused with both the 
left and right original image. Total computation time for the 256 
x 256 image varies from 3 minutes for A1 = 1 , X 2  = 1 to about an 
hour for X1 = 4, X z  = 2 giving an effective depth resolution of two 
pixels and 0.25 ~ ixe ls .  See Fig 6 for results with various values of A. 
Underwater  Images  
Enlarged prints were made from an underwater stereopair taken 
with a Photosea 2000 35mm stereocamera ( b  = 250 and f = 49mm 
approx), digitised using a Sharp color scanner at 150 dots per inch, 
and then 680 x 680 pixel images (with 8 bit gray scale) were ex- 
tracted. This is equivalent to scanning the original 24 x 36 mm 
negative at approximately 750 dots per inch. This image pair has 
an abundance of fine texture, though contains highlight, shadow, 
significant lens distortion, perspective distortion, areas of poor def- 
inition, a large disparity range and forms an incomplete model. 3D 
views of the reconstructed surface are shown in Figure 7. Total 
computation time for the 462,400 points varies from 68 minutes for 
X1 = 1, Xz = 1 to approximately ten hours for X 1  = 2, X2 = 2 giving 
an effective depth resolution of two pixels, and 0.5 pixels. Note that 
by changing the projection and using surface rendering, the results 
can be presented at any suitable orientation. 

6. DISCUSSION 
This paper has introduced a new stereo matching technique which 
is flexible in its use of matching primitives and presents a unified 
framework for the recovery of dense disparity and intensity maps. 
There are a number of interesting aspects to this work. 

Firstly, we have been able to present the framework of Dispar- 
ity Space, and show how it can be associated with a hypothetical 
middle image Intensity map which we have then recovered as 
an integral part of the solution. In some respects, the current work 
offers a unification of the global disparity field work of Witkin, et 
a1 ( 1987) and Bamard (1989), and the epipolar correspondence of 
Ohta & Kanade (1985) and similar work. The Disparity Gradient 
limit of Pollard, Mayhew & Frisbee (1985) is also included, as this 
simply represents a transition rule. 

Secondly, the idea of trading scale for depth precision (Nishihara, 
1983) is incorporated through the use of the scale factors XI, and 
XZ, and we have presented some results at  different scales. Note 
that the increased precision is achieved at  the expense of a very 
significant increase in computation time when using a serial machine. 
The algorithm can be recast as a coarse-fine parallel algorithm, by 
iteratively changing the X values and then solving for each solution 
line independently and concurrently. 

Thirdly, the properties of Disparity Space itself are interesting, 
though not explored in this paper. We note (Fig lc) that t h e r ~  exists 
a point in Disparity Space for all points in the stereo envelope. The 
search space is finite, and represents all points in the object space 
from infinity 0 to the closest point of the stereo overlap P. All 
vertical lines pass through the point 0, and two points located at  
the same distance form a line at right angles to PO. Thus we see 
that there are spatial relationships implicit within Disparity Space 
geometry. It may be interesting to develop other 'Shape from X' 
algorithms in terms of Disparity Space, as it may offer a framework 
for unifying disparity and other depth and shape cues. 

The Collinearity equations can be derived by introducing 
X g  = s.R.X + A X  where X g  is the ground system; R is a rotation 
matrix; s is a scale factor and substituting for the model cooordi- 
nates X using eq(6). A X  are shift terms. The above equation can 
be used to determine ground coordinates in any arbitrary system, 
given a minimum of three control points. Hence the Disparity map 
D(r, t)  and the Intensity map can be transformed to a ground 
value and so we have solved eq (1). 

Finally, control points, straight lines, planar surfaces can be pro- 
jected into Disparity Space and then used to aid the global solution. 
We should reconsider the nature of control in this kind of work. 

7. CONCLUSIONS 
We have presented anew method for stereo reconstruction that com- 
bines various matching functions within the representational frame- 
work of Disparity Space that can be regarded as a unification of 
earlier work. The system can be solved at different scales, and we 
have used a global Dynamic Programming solution to solve for sec- 
tions through the defined space system, which can be specifed as any 
logical route through disparity space. The method haq been applied 
to close range and aerial images which exhibit a variety of image 
problems, such as poor surface texture, smooth intensity changes, 
repetitive texture, highlight, shadow and incomplete models. 

In future, we wish to include a photometric model and control 
features within the solution; we also wish to perform a detailed 
accuracy evaluation; and the non-epipolar solution is expected to 
have some success with occlusions. 
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Figure 5: Venus Solution in progress for 
X I  = 2,X2 = 2 using transition rules A. 
The  reconstructed Intensity map I(r,t) and 
the Disparity map D(,,k) are shown almost 
completed. Note that  both the left and 
right image will fuse w ~ t h  the center image 
for stereovision 

Y 
I F I ~ U ~ P  7 Surface reconstruction of dam- 

aged 

I ( I , ~ )  
been 

underwater pipe. The  In 
and the Disparity map 
calculated by the stereo 

tensity map 
D(1.t) have 
reconstruc- 

f tlon method presented In thla psper, and 
then the above perspective vlews have been 
created bv renderlna the surface wlth the 
Intensity map. T h e  above are raw results, 
there has been no editing, smoothing or  
point rejection. The  lower image clearly 
shows the depth errors concentrated in the 
area of the puncture through the pipe and 
the area around the text. 

I.1g11rt.6 \'en115 solut~ons for d~ffrrrnt  deptli rrcolut~on 
a ) A l  = I , &  = 1  b) X I  = l , X z  = 2 c) X I  = 2 ,  A 1  = 2 d )  X I  = 2,Xz  = 4 




