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Abstract 

This paper reports on a probabilistic learning method 
that can be used to train a multilayer perceptron (network). 
The method can be viewed as a variation on the popular 
learning rule of backpropagation (BP). The alternative 
method is based on the criterion of empirical maximum 
likelihood (EML) rather than the sum-of-squares cost 
function used in the conventional BP. In tests where 
simple networks are applied to experimental data, the EML 
algorithm converges to a near optimum solution, without 
increasing the computational complexity. Moreover the 
number of iterations required for convergence is often 
found to decrease. The results also illustrate that the error 
landscape produced by EML is simpler than BP. Hence 
this leads to a more efficient learning rule for multilayer 
networks. 

Introduction 

Neural networks and connectionist models of 
computation are experiencing a renewed popularity. 
Algorithms which allow a network of neurons to learn 
input-output relationships from examples have been 
recently developed and successfully applied to various 
difficult problems[l]. 

In layered neural networks, a widely used learning 
algorithm is the backpropagation method, reported by 
Rumelhart et a1[2]. This is among the most versatile and 
effective training methods reported to date. 

However, it is generally acknowledged that BP 
suffers from slow convergence and a tendency to get 
trapped in local minima. Existing solutions to the problem 
involve either increasing the number of hidden nodes[3] or 
introducing a random component to the search 
algorithm[4]. Both approaches result in an increase in the 
computation involved in the learning process. 

In this paper an alternative approach, based on a 
reformulation of BP method in terms of empirical 
maximum likelihood criterion, is presented. This is 
formulated by assuming the network outputs as 
probabilistic values[S]. It will be shown that this approach 
reduces the convergence rate without increasing the 
computational complexity, leads to more efficient 
generalisation capability, and produces a simpler error 
landscape with comparision to the conventional BP. 

In the following a short summary of the BP 
algorithm is given. The EML formulation of the algorithm 
is then stated, and it is shown to reduce the number of 
calculation per iteration. We then present the results of 
simulations comparing the conventional BP and its EML 
formulations, in the training of neural networks with 
experimental data arising from template matching. 

The Backpropagation Algorithm 

The general idea of BP algorithm is to make 
appropriate adjustments to the network weights in the 
direction of negative gradient, such that the overall error of 
the network is minimised. This error is most commonly 
formulated as the sum of squares of the errors between 
outputs from the network and desired outputs used for 
training, and is given by : 

where the summation is over all training cases c and all 
output nodes j, djc is the desired output (usually coded as 0 
or 1). 

In the following formulae, we have adopted a similar 
notation to that used in ref.2, where a single pattern 
presentation is considered, both the inputs to and outputs 
from a node are described by yi, and are distinguished 
only by the value of the subscript: 

In any given node, the output yi is related to the 
inputs (yi) by: 

1 x . = Z  Y i  W.. y .  =- J .  ? I J  (2) 
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The network weights wi, are optimised by an 
iterative procedure in which the adjustments to the weights 
at the nh iteration is given by: 

where q is the learning constant, a is the momentum term, 

and 6, is an error derivative associated with a node j after a 

pattern presentation. For an output node is given by[2]: 



and for a hidden node 6j is: 

where the summation k is over the number of connections 
to the nodes in the next layer. The above is only a 
summary of the BP algorithm, presented here to set the 
stage for the discussion of the EML learning rule. 
However detailed analysis of the BP method is presented 
in Rumelhart et a1[2]. 

Empirical Maximum Likelihood 

The word empirical is used here since this approach 
does not assume a prior form of distribution for each class 
of data (as is the case for a maximum likelihood Gaussian 
classifier, for example). In the EML learning method, the 
values of input and output vectors are defined as 
probabilities, thus instead of minimising an error function, 
the EML learning rule attempts to maximise the likelihood 
or probability of the training sequence. 

For a given pattern, yi can be assumed to be the 
probability that a pattern wiil belong to class j, then the 
probability of all the training data being c o m t  will be: 

The proposed method maximises the log likelihood 
given by: 

Since L is non-positive we negate it to obtain a cost 
function to be minimised given by: 

where the rearrangement with in the summation is possible 
because dj, is always either 0 or 1. 

When the BP algorithm is reformulated in terms of 
the above cost function , the feed-forward formulae remain 
the same and it is only the error derivatives for output units 
that are effected, since they are explicitly depend on the 
form of the cost function. Hence following the BP 
formulation, the error derivative associated with an 
output node j, using the EML cost function is calculated as: 

The remaining formulae in the backpropagation 
method remain unchanged, but will of course give 
different values since they use terms evaluated by 
expression (9). Since it is not necessary to evaluate the 
cost function in the course of backpropagation learning, 
the only computational difference is dropping of the term 
yi(l - yi) from the formula for 6 of an out put node in the 
conveniional BP. The consequences of this modification 
are three fold: 

Firstly, compared with the standard formulation, 
there is a saving of two floating point multiplications per 
training sample in each iteration, in the computations 
associated with the learning process for a two class 
problem. If there are more than two classes, the number of 
multiplications saved is multiplied by the number of 
outputs from the network. 

Secondly, the magnitude of error derivatives at the 
output layer is increased by a factor of at least 4, compared 
with the conventional BP, so it is appropriate to reduce the 

learning rate q by a similar factor when applying the EML 
formulation. 

Thirdly, the term yj(l - yj) in the conventional BP 
formulation is effectively a bell-shaped weight function 
applied to each point's contribution to the gradient, which 
achieves its maximum for samples in the feature space 
which are on the decision boundary, and which tails off 
towards zero as the decision boundary moves away from 
the sample, even though the sample may become 
misclassified in the process. 

This accounts for a phenomenon often observed in 
training multilayer networks, that there are large regions of 
the weight space far removed from the global minimum in 
which the error function is plateau-shaped. When the 
weight vectors starts in, or wanders into, such a region, 
the conventional BP may adjust the weight very slowly, or 
worse still stop completely because the gradients are so 
small as to be beyond the numerical range of the computer. 

In the EML formulation however, the unweighted 
gradient di - yi approaches unit magnitude as the decision 
boundari moves further away from a misclassified 
sample, and consequently such plateau regions should not 
occur. 

This is illustrated with a simple abstract example. 
Consider a classification problem in which there is a single 
feature x and two classes (1 and 2). Let the training set for 
this problem consist of the following six samples - Classl: 
x= 0.0, 0.1, 0.3; Class2: x= 0.2, 0.4, 0.5. Let a single 
layer network for this example consist of a single node, 
having two weights wg and wl. Figure 1 (a) is a contour 
plot of the conventional BP cost function against the two 
weights. The surface consists of a deep ravine, containing 
the global minimum, and surrounded by plateaus on two 
sides and a hill at one end. Figure l(b) shows the EML 
cost function plotted against the two weights over the same 
range. Again the global minimum, lies in a deep ravine, 
but in this case the entire surface is an elongated bowl 
shape and contains no plateaus within the plotted range. In 
this example, a gradient descent algorithm should converge 
relatively quickly to the minimum of the EML function 
regardless of the starting point, but in the conventional BP 
algorithm, starting points outside the ravine are liable to 
extremely slow convergence when the weight vector either 
starts in, or wanders into, one of the plateau regions. 

Similar properties can be expected in the cost 
functions arising from multilayer networks. With suitably 
chosen parameters, the EML formulation should not 
exhibit the same tendency to slow down as a result of 
plateau regions. 



Performance on Experimental Data References 

Experimental data were generated from the template 
matching of binary digital images of text characters at low 
resolution and under noisy conditions. This problem arises 
in the compression of document images, and the data used 
are from documents where conventional template matching 
has proved unsatisfactory[7]. 

A feature which is commonly used to detect a match 
between two characters in the same typeface is the 
weighted Exclusive-OR (WXOR) pixel error count[8]. 
This alone is insufficient, and a good distinction is only 
achievable when other easily measured features of 
characters, such as dimensions, number of black pixels 
and topology are also taken into account. In classification 
terms, this is a two-class problem (match and no match), 
where there can be up to seven 'hand-crafted' features. 

The data used for this test were obtained by 
measuring four features of pairs of characters extracted 
from a single document. 50 pairs were used for training, 
and a further 500 pairs were used for testing the trained 
classifier. A two-layer network with two hidden nodes 
was used for training. Larger networks have also been 
applied to the problem but the improvement has been 
negligible. 

Figure (2) shows the learning and generalisation 
curve for both the conventional BP and its EML 
formulation, averaged over 10 random starting points, to 
remove the dependency on the start-up weights. From the 
graph it can be seen that, the EML rule converges to a 
steady state faster than its counterpart. Furthermore the 
EML rule provides an efficient generalisation capability, 
and for this problem this has lead to a 3% improvement in 
the recognition rate on the test data. 

Conclusions 

The EML formulation of the backpropagation 
algorithm for training neural networks has been tested on 
both abstract and experimental data. The analysis and tests 
presented here have shown a number of factors in favour 
of the alternative method: 
1. It involves fewer calculations per iteration. In addition 
to speeding the calculation on a conventional computer, 
this could also reduce the complexity of hardware 
implementations of neural networks. 
2. It reduces the number of instances where 
backpropagation fails to locate the global minimum of the 
cost function. 
3. The number of iterations required to reach convergence 
is often much reduced. 
4. The ability of a network to generalise is improved. 

The results in this paper are typical of only a small 
subset of the problems which neural nets are applicable. 
Nevertheless, we believe that the EML learning rule has 
many advantages over conventional BP, and strongly 
deserves further investigation. 
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