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ABSTRACT 

The first step in a general 3-D vision system is the 
segmentation of a digital image into a number of regions 
that correspond to physical scene surfaces. T o  
compensate for the difficulties associated with edge and 
region based segmentation methods, we present an 
integrated approach for range image segmentation. In the 
first stage we detect jump in the range image. The second 
stage, involves detecting fold edges using the absolute 
value of the residual and surface normals. We have used a 
Bayesian approach for the region growing part of our 
algorithm. Markov Random Filed is used to model the 
apriori knowledge information in the Bayesian 
formulation. A number of experimental results show that 
this approach is very effective in segmenting a wide 
variety of range images. 

Computer vision researchers have been 
investigating object recognition and scene understanding 
since the early 1970's. Most of the previous research has 
limited itself to intensity images. During the last ten years, 
digital range images have become more available. Range 
images are unique in that they directly measure the shape 
of 3-D objects. Range images can be obtained from a 
variety of active (like laser) and passive (like stereo) 
sensors. 

The use of data driven early processing techniques 
of image data is important for a widely used vision 
systems.This requires that no restrictive high level models 
be assumed in early processing stages of image analysis. 
For image segmentation, the previous research work can 
be classified into two groups. Edge detection based 
methods look for the dissinlilarity of neighboring pixel 
points to detect edges while region based methods look 
for the similarity of neighboring pixel points to segment 
the image. 

There are a number of problems with edge based 
and region based methods. For range images, due to the 
difficulties in detecting fold edges, range image 
segmentation based solely on edge detection is not robust. 
For region based n 1 e t h o d s 3 ? ~ ,  the problems of 
determining good seed regions, defining an appropriate 
similnrity criteria for regions pixels and performing the 
region growing in the proximity of fold edges are difficult 
to solve in the presence of noise and slowly varying 
edges. Due to these difficulties integration of these two 
techniques is important to achieve the requirements of a 
flexible robust vision system. In this paper we present an 
approach for integrating both edge based and region 
based methods for range image segmentation. The 
approach also combines a number of features to detect 
edges in range images. The algorithm is data driven to 
make it applicable to it wide range of applications. 

The integrated segmentation approach proceeds in 
a sequential fashion. We first detect jump edges. The 
resulting jump edge map is then cleaned using a relaxation 
algorithm that is based on the Maximum aposteriori 
(MAP) estimator. Regions isolated by jump edges are 
excluded from further processing if they pass a goodness 
of fit test. For fold edge detection we realize that no single 
edge detection technique is sufficient to detect fold edges 
reliably. In Al-Hujazi and sood2 we have developed the 
mathematical basis for using the absolute value of the 
residual (AR) for fold edge detection. We have used AR 
in addition to normal to detect fold edges. The resulting 
fold edge map is cleaned using an approach similar to that 
in cleaning jump edge map. 

The remainder of this paper is divided into three 
sections. In the next section we describe our approach to 
detecting edges in range images. Section 3 describes the 
region growing part of the algorithm. In section 4 we 
describe the algorithm steps. Experimental results on a 
number of range images are presented in section 5. 
Finally, some conclusions are presented in section 6. 

2. DETECTING EDGES IN RANGE IMAGES 

Edge detection techniques play an important role 
in range image analysis. There are three basic edge types 
in range images: jump, fold and smooth edges. Jump 
edges correspond to discontinuities in depth values. Fold 
edges correspond to surface creases where the surface 
normals are  discontinuous. Smooth edges are  
characterized by continuity of surface normals but 
discontinuity of curvature. Most of the previous research 
work has been concentrated on detecting the first two 
types of edges. Detection of fold and smooth edges is 
very difficult because they do not correspond to large 
depth variation and consequently, tend to hide in noise. In 
the algorithm presented here we concentrate on detecting 
jump and fold edges only. 

A variety of methods are available for jump edge 
detection in the literature. The problem of detecting jump 
edges in range images of industrial objects is sinlpler than 
that of detecting fold and smooth edges. In the algorithm 
presented here jump edges are detected as follows: For 
each pixel a plane is fitted to a 3x3 region. The f i t  error is 
then determined and if it is high the pixel is marked as a 
possible jump edge. The threshold used for jump edge 
detection is determined from the noise standard deviation. 

Our study of the use of ARI shows that this 
feature is very effective in detecting edges but it has some 
difficulties at the proximity of a comer or near interacting 
edges. Fold edges can also be detected by observing the 
surface normals variation. We have combined AR with 
surface normal to detect fold edges. We have observed 
that the use of this multiple approach to detect fold edges 
is effective and produces better results than would have 
been obtained using each one of them separately. 



3. BAYESIAN APPROACH TO REGION 
GROWING 

In this section we present a Bayesian approach for 
the region growing part of the algorithm.The Bayesian 
optimal estimator approach requires the development of: 
1) Model to encode apriori knowledge. 2) Stochastic 
models for the observation. 3) MAP estimator. 4) 
Algorithms for the computation of these estimates. Next, 
we describe requirements 1 through 3, the algorithm for 
computing the estimate will be described in the next 
section. 

3.1 MODELING THE APRIORT KNOWLEDGE 
In the work presented here, we have used Markov 

Random Field (MRF) on a lattice to model our apriori 
knowledge4.5. MRF is a direct extension of a Markov 
process to higher dimensions and originated in the work 
of king4. Most useful for our purpose is the definition of 
a discrete MRF, a generalization of the concept of a 
Markov chain. A discrete MRF on a finite lattice is 
defined as a collection of random variables, 
corresponding to the sites of the lattice, whose probability 
distribution is such that the conditional probability of a 
given variable having a particular value given the rest of 
the variables, is identical to the conditional probability 
given the values of the field at a small set of sites. 

A major difficulty in applying MRF formulation is 
in the definition of a valid conditional distribution. An 
alternative way of defining a MRF is based on the 
Markov-Gibbs equivalence established by the 
Hammersley-Clifford theorem. Before stating the theorem 
we need the following definitions: 
Definition: Let G be a neighborhood system defined over 
a lattice S, we define a "clique" c as either a single site, or 
a set of sites of the lattice, such that all the sites that 
belong to c are the neighborhood of each other. Fig. 1 
shows the cliques associated with G2 neighborhood 
system. The labels in Fig. 1 correspond to the respective 
clique potentials. 

Fig. 1. G2 and its associated clique types. 

Definition:. A random field F defined on S has Gibbs 
Distribution (GD) or equivalently is a Gibbs Random 
Field (GRF) with respect to G if and only if its joint 
distribution is of the form 

where Zo is a partition function, Uo(f) is the energy 
function, Vc(f) is the potential associated with clique c, 
and T is a parameter that corresponds to temperature in a 
physical system. 

Hammerslev-Clifford Theorem:- Let G be a 
neighborhood system on a finite lattice S. A random field 
F is a MRF with respect to G ii' and only if its joint 
distribution is a GD with cliques associated with G. 

The MRF concept is used to model the apriori 
knowledge about the spatial interaction among the image 
pixels within neighborhoods that are small enough for 
practical purposes. Modeling the apriori knowledge using 
MRF-GRF equivalence requires specifying the clique 
potentials associated with the neighborhood system. The 
MRF approach allows us to integrate a number of features 
by defining appropriate clique potentials for each image 
feature. In the work presented here a second order 
neighborhood system is chosen. 

For refining the jump edge map a coupled depth 
and line model is used. The cliques potentials for the line 
process (I) of the coupled model are as follows: a=10, 
P=-2 , y=6 ,c=S. The same values are used for all the p's 

and y's and all other configurations have zero potential 
value. In the coupled model presented here the dual line 
process lattice is assumed to coincide with the original 
image. The choice of parameters effectively discourages 
both the formation of thick edges and the presence of 
sharp turns. 

For the depth process we consider the variation in 
the depth values in each clique, and we model the 
potentials of the continuous depth process as follows: 

Vc(f, 1 ) = I Average of pixels depth values in the clique 
for which the line process indicates no edge I 

Encoding the apriori knowledge for fold edges 
follows the same approach as that of jump edges. The 
depth model is not useful for fold edge detection since a 
fold edge does not introduce large depth variation. We 
use a coupled line, normal and AR model to encode the 
apriori knowledge for fold edge processing. A second 
order neighborhood system is used for the coupled 
model. 

The line process for fold edge processing is 
similar to that of jump edges. The potential assignments 
for this process are: a = 15, P = -2 ,  y = 10, = 20. The 
same values are used for all the p's and y's and all other 
configurations have zero potential value. The second 
model used for fold edge detection is that of the surface 
normals. The clique potentials for the normal process are 
defined as follows: 

Vcs(f, I )  = I Average of the angles between the surface 

normals in the clique for which the line 
process indicates no edge I. 

Fold edges are located by detecting a maxima in 
AR in a direction perpendicular to the edge direction. For 
the AR model, we chose the non-zero clique potentials as 
follows: 

p= -10 If both points in the clique are edge points and 
AR is maximum in a direction perpendicular to the edge. 

3.2. MODELING THE OBSERVATION 
For the purpose of image segmentation, the image 

S can be modeled as the union of M regions Rj. Let us 
assume that the observations g correspond to samples of 
the surface f taken at a set of sites S. We assume that the 
observations are corrupted by a zero mean white additive 
Gaussian noise process with standard deviation of On. 
This leads to the definition of the conditional distribution1 



3.3. MAXIMUM APOSTERIOR ESTIMATOR 
The Bayesian approach to the solution of 

reconstruction problems has been adopted by several 
researchers495. In most cases, the criterion for selecting 
the optimal estimate has been the MAP estimator. 
Estimation for the scene that maximize the aposteriori 
distribution is derived as follows: The posterior 
distribution is given by: 

The MAP estimator can be shown1 to be 
equivalent to the minimization of: 

1 +-I ~ ( f f l l - g i ) '  (1) 
202 jjs 1 isRj 

for a jump edge and 

for a fold edge. 

4. ALGORITHM DESCRIPTION 

The formulation presented in the previous sections 
is now used in our integrated segmentation approach. The 
application of edge detection techniques to segment 
images can lead to three basic types of errors: 1) The false 
detection of edges (T-1). 2) The false rejection of edges 
(T-2). 3) Localization error (T-3). T-1 errors generally 
result in oversegmenting the image. The 
oversegmentation can be recovered by merging adjacent 
regions. Errors of T-2 are more severe in range images 
due to the presence of fold edges and result in 
undersegmenting the image. T-3 errors are also difficult 
to correct in range images because depth variation, close 
to a fold edge, is small. 

Fig. 2 shows the steps in the algorithm. The range 
image is first smoothed using a median filter then jump 
edges are detected. The applications of the jump edge 
detection technique presented in section 2 will result, in 
general, in errors of T-1. Using a 3x3 window, jump 
edges which are, at the most, three pixels thick will be 
formed. The process might introduce errors of T-2 also, 
but these errors can be corrected in the fold edge detection 
step. Due to the large depth variation for jump edges, T-3 
errors are negligible. 

Range image 

- Smooth image and detect jump edges. 
- Clean jump edge map and isolate 

regions that pass the goodness of fit test. 
- Estimate AR and normals. 
- Detect fold edges iteratively. 
- Clean fold edge map. 

I 

f Segmented range image 

Fig. 2. Steps in the algorithm. 

Jump edge map is then processed using the jump 
edge relaxation algorithm. The relaxation algorithm 
minimizes Equation 1 without the observation part. The 
connected components in the resulting jump edge map is 
found using a 4-connected component algorithm. A 
fourth order polynomial is then fitted to the resulting 
connected components and the regions are verified using 
a goodness of fit test. The goodness of fit test we 
employed compares the residual of the fit to that of the 
noise. Regions that pass the goodness of fit test are 
removed from further processing. In most cases, this step 
successfully isolates the background region and the 
regions surrounded by jump edges only. This reduces the 
computation needed in the following steps. 

The AR values and surface normals are estimated 
for all image pixels. Both AR and normal require 
thresholds to detect fold edges. Instead of using 
thresholds that might work under some conditions and 
fail in others we have used an iterative process to detect 
all possible fold edges in the image. The iterative process 
starts with a high threshold value for both features. The 
threshold values are then reduced until all possible fold 
edges are detected. The detection of fold edges will 
results, in general, in T-1 and T-3 errors. It is essential 
in our algorithm that all errors of T-2 be eliminated. This 
is achieved by verifying regions obtained using the 
iterative process. The verification ensures that surface 
patches obtained belong to only one object region. This is 
achieved through the use of the goodness of f i t  test. If a 
particular region is not verified by the goodness of fit test, 
more fold edges are detected by lowering the threshold 
values for both AR and normals. The process is repeated 
until all regions are verified. 

The resulting edge map is then processed using 
the fold edge relaxation algorithm. The goal of this step is 
to eliminate all T-1 errors and to reduce the localization 
errors (T-3 errors). Localizing fold edges are difficult 
because they do not correspond to a large depth variation. 
The use of normal and AR (Equation 2) attempt to reduce 
the localization errors. 

The relaxation algorithm minimizes Equation 2 to 
obtain the final segmentation. The strategy we have 
followed is divided into two steps as follows: 1) In step 
one Equation 2 is minimized until no further changes are 
possible. In most cases, the output after this step has a 
good localized edges and all possible merges between 
adjacent surfaces are performed. 2) In step two, the image 
is processed using only the observation part of Equation 
2. This in effect will reduce the MAP estimate to region 
growing based on fit error criteria. In our experiments 
surface normals have the most effect on the segmentation 
output. 

5. EXPERIMENTAL RESULTS 

The algorithm presented above has been applied 
successfully to a wide variety of range images. The 
algorithms performance on 3 range images is discussed in 
this section. 

Two joint cvlinders range image results; Fig. 3 shows a 
noisy range image of a part consisting of two cylinders of 
different diameters. As can be seen the algorithm 
segmented the image correctly. Some points in the 
background region are left unclassified. This is because 
the background region has a slope variation at the upper 
left and lower right hand comers of the image. 

Cube ranee imaee results; The segmentation results of a 
cube range image with holes drilled through them is 
shown in Fig. 4. This image provides an example of 
range image with a combination of flat and cylindrical 



surfaces. Gaussian noise of mean zero and standard 
deviation of 2.0 where added to the image. The algorithm 
segmented the image correctly with the exception of two 
small background components which are left unclassified. 
This is because these regions are small compared to the 
minimum size required by the fitting algorithm. 

Fig. 3. Segmentation results on a two cylinders image. 

Fig. 4. Segmentation results on a cube image. 

is available, considerable saving can be achieved since 
minimizing Equation 2 is only done in a small area around 
the processed pixel. Thus the algorithm can be 
implemented using parallel architecture if the neighboring 
pixels are not updated simultaneously. 

Table 1 The CPU time (seconds) for two objects at three 
stages of the algorithm. T1 is for the object in Fig. 3, and 

T2 is for the object in Fig. 5. 

6. CONCLUSIONS 

Due to the difficulties associated with edge based 
and region based segmentation methods, we have 
explored the idea of integrating these two approaches for 
range data segmentation. In addition to integrating edge 
and region based techniques, we have used a number of 
image cues to detect discontinuities in range images. The 
experiments show that our algorithm produces good 
results for the images tested. 

The algorithm is attractive from the computational 
and robustness point of view. We have observed that the 
use of the sequential approach to detect edges is 
compuationally attractive since a large number of regions 
is isolated earlv in the seementation orocess. A number of 
experiments s6ows that tYhe use of th'e Bayesian approach 

Industrial Dart range image results: Fig. 5 shows a noisy for the region growing part of the algorithm produces 
industrial part range image with Gaussian noise of better results than that of a region growing algorithm standard deviation of 2.0. The final edge map shows that based on the fit error. 
the algorithm segmented the image correctly. The iterative 
regio;identifica%on algorithm resulted in 0-versegmenting ACKNO\VLEDCMENTS 
the region inside the circular pan of the object into two 
region. The fold edge processing procedure correctly This work was supported in pan by the office of 
merged these two regions to obtain the final results. Naval Research under contract N00014-89-K-0186. 

Flg. 5. Segment;ition results on an  industsi;il part im;ige. 

To asses the algorithm computation complexity 
we have measured the CPU time for three time 
consuming stages of the algorithm. Table 1 shows the 
CPU time (in seconds on a VAX 8800) at the three stages 
of the algorithm for the objects shown in Fig. 3 (Tl) and 
the object in Fig. 5 (T2). For the planar fit, considerable 
time saving can be achieved by using convolution 
window to determine the plane parameters using parallel 
hardware. The iterative region identification stage in the 
algorithm is also time consuming for some of the images 
tested. It can be seen from the table, that the computation 
will be reduced substantially if the object contains a 
number of regions surrounded by jump edges. This 
illustrates t h e  advantage of the- two stage process 
(processing jump edges then fold edges) used in the 
algorithm. Fold edge processing is another stage 
where a lot of computation is needed. If parallel hardware 
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