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Abstract 

In this paper, a survey of recent progress made in  machine 
vision systems is presented. T h e  main focus of the  paper is 
on industrial inspection problems. Several important  contri- 
butions recently reported in automated visual inspection of 
integrated circuits, printed circuit boards, packaging, disk- 
heads, metal surfaces, a n d  other  products are revisited. 

1 Introduction 

Machine vision methods and  technology applied to  industrial 
inspection problems have received a great deal of attention in 
the  last decade, (91. A number  of new systems for a variety 
of applications have been reported in the  literature in the  
last two years. This  paper a t tempts  to survey some of the  
most relevant applications a n d  solving approaches recently 
documented in t h e  literature. This  survey is by no means 
exhaustive, but  i t  does help identify new contributions and  
provides details of proposed methodologies. 

T h e  sections of the  paper are organized according to ap- 
plications. In each section, different contributions involving 
systems and related machine vision methodologies a re  sur- 
veyed. T h e  depth  of t h e  material is intended to provide 
a self-contained description of the  algorithms and systems, 
although for further  details, readers are referred to t h e  tech- 

W h e n  a defect is detected i ts  position coordinates are stored 
in a disk a n d  t h e  subimage containing t h e  defect is displayed. 

There  is  a defect usually referred to  as surface separation. 
This  type  of defect is generally not detected by the emit ted 
light sensing approach. Hence the  proposed technique incor- 
porates also reflected light-based methods which can detect  
this  kind of defect. 

T h e  image processing is performed by pipelined hard- 
wired logic circuits. Image features are extracted from tem- 
porary local image memories by way of wired logic operators. 
Comparison of a pair of feature extracted pat terns are also 
performed by logic circuits wired to  local image memories. 

T h e  system is able to detect a defect of width 0.01 mm. 
T h e  t ime consumed in the  inspection of a 500mm x 600mm 
P C B  is 18  minutes approximately. 100% defects were de- 
tected (compared by electric testing results). False alarms: 
less t h a t  five occurances per 500mm x 600mm PCB. De- 
fects resulting from photomasks can not be detected. This  
is because this  system compares pat terns on actual circuit 
boards. To  detect defects resulting from photomask defects, 
it  would be  necesary to compare pat terns made from differ- 
ent  photomasks. 

According to  t h e  statistics given in  [19], t h e  system seems 
to  have a n  exceptional accuracy, suitable for high-density 
PCBs (min.  pat tern width 0.08 mm,  with pixel element size 
is 0.01 mm).  

nical rkport format of this paper 1281 and  to  the  original con- 
tributions. It is hoped t h a t  presentation of the  material in 2.2 Solder Joint Inspection 
the  paper will help identify common machine vision methods A solder joint detection method must be able to classify 
arising from different systems. t h e  defects not  just make passlno pass decisions. Tradition- 

ally two inspection methods are used to  achieve this: human 

2 Printed Circuit Boards 

2.1 Printed Circuit Board Inspection Using 
Fluorescent Light 

P C B  defects such as shorts ,  cuts ,  mousebites, surface sep* 
ration are detected by using violet or ultraviolet illumination 
and detecting the  pat terns using a high sensitivity T V  cam- 
era. This sensing captures t h e  emit ted flourescent light (FL)  
by the  base material af ter  filtering. 

A working system using t h e  above sensing ideas was de- 
veloped in 1191 which uses emit ted FL and reflected light 
together to be able to detect  and classify all possible de- 
fects. Basically the  system works by subtracting two grabed 
images, taken from two PCBs,  so that  differences between 
these two images reveal defects. T h e  comparison algorithm 
is "intelligent" in the  sense t h a t  it selects the  boundaries and  
narrow sections of the  pa t te rn  and  compares them. see de- 
tails in [17, 18, 161. Even in the  presence of deformations 
in the patterns or slight registration errors, line shaped de- 
fects can be detected.  T h e  PCBs are placed on an X-Y stage 
and are scanned in t h e  X and  Y directions. T h e  system 
also includes defect recognition and  control sections. Before 
inspection accurate registration is done. But even when the  
process has begun, deviations from perfect registration is de- 
tected and corrections are made automatically. This allows 
the correction for slight expansions or  contractions of PCBs. 

operator ,  and  electrical testing. 
Nakagawa in [29, 31, 301 exploited the  deformation of a n  

intense light b e a m  incident on t h e  solder joints, to  acquire 
3-D structural  information of the  joint. T h e  algorithm is 
fast, is not influenced by high gloss of t h e  solder joints, and 
is relatively insensitive to ambiental illumination conditions; 
b u t  i t s  speed is limited by the  mechanical positioning of t h e  
beam. Acceptlreject decisions are accurate but  defect clas- 
sification is not quite satisfactory. Slight positioning errors 
of t h e  light beam can produce large classification errors. 

Mclntosh (271 uses special scene illumination techniques 
and  camera  filtering to accentuate the  joints and to suppress 
the  background. This allows for the extraction of binary 
image features used in the inspection algorithm. The  sys- 
t e m  has low cost, and  according to t h e  author it has 99.8% 
flaw detection rate a t  120 ms per solder joint. But  i t  seems 
t h a t  binary images are not rich enough for a detailed defect 
classification. 

Currently, there are a number of commercially available 
non-visual solder-joint inspection systems: Vanzetti 1441: the  
au thor  uses infrared signatures of joints after heating them 
with a laser beam. This method also has limited speed due 
to  the  mechanical positioning of the  beam, positioning errors 
can produce large classification errors, and heating the joints 
by t h e  laser is questionable. 

In [21, 221, a method based on radiographic imaging was 
presented. T h e  system exploits shape and volume properties 
of t h e  X-ray images for classification. This  method has shown 



to  be  very accurate and  is particularly suitable for Surface 
Mounted Devices (SMD) with hidden leads. T h e  detection 
rate is reported to  be in the  range 95%-99% with 5% false 
rejects. 

In [4], the  problem of automating the  visual inspection 
of pin-in-hole solder joints is considered. Two approaches 
are presented: statistical pat tern recognition and  expert  sys- 
tems.  T h e  Objective Dimensionality Reduction (ODR)  al- 
gori thm is presented to  enhance the  performance of the  st& 
tistical method.  

Statistical pattern recognition approach 
This  approach consists of adequate feature selection and  

classifier design. Twenty seven features were selected by the  
authors by studying t h e  distribution of their values for each 
class. Details of their computat ion can be found in [5]. These 
features can be  divided into 5 categories: 

Basic gray-level statistics features: for each subimage 
containing a solder joint, 4 general features are cal- 
culated a s  follows: Normalized mean gray-level, the  
minimum normalized mean gray-value, and  the  per- 
centage of dark and  bright pixels. Also 2 application- 
dependent  gray-level features a re  calculated: the  nor- 
malized gray-level volumes of the  central and  outer  
frame subwindows. 

3-D gray-level inert ia  features: four 3-D gray-level in- 
er t ia  features a re  used. These features est imate the  
first principal moment of inertiaof t h e  subimages, the  
s u m  of all three moments of inertia (x, y, and inten- 
sity), and  t h e  ratio of the  brightness moment to t h e  
average of t h e  two spatial moments of inertia. 

Faceted gray-level surface a rea  features: 2 features are 
used. These compute  t h e  faceted gray level surface 
area,  and the  surface a rea  obtained by summing the  
gray-level surface metric determinant over all pixels. 
These features are illumination independent. 

Differential geometric gray-level surface curvature fe* 
tures: 9 features a re  used. These include the average 
value and  t h e  percentage of the  positive and negative 
Gaussian curvature pixels, average values and per- 
centage of t h e  positive and  negative mean curvature 
pixels, a n d  t h e  quadrat ic  variation of the  gray-level 
surface. These features a re  also illumination indepen- 
dent .  

Binary image connected-region features: 6 features 
a re  computed for each thresholded subimage. These 
include the  number of four-connected regions, the  
number of pixels in the  largest four-connected regions, 
t h e  number of pixels in t h e  thresholded image tha t  are 
not in t h e  largest region, t h e  ratio of the a rea  of the 
min /max box around the  largest region, the  aspect 
ratio (width/height)  of the  min/max box surround- 
ing the  largest region, and the  ratio of the  perimeter 
squared to the  a rea  for the  largest region within the  
su bimage. 

T h e  authors in [4] used a minimum-distance classification 
algorithm. In this algorithm no assumptions are made about  
the  probability density function of the  da ta ,  and simple dis- 
tance metrics are used for classification. Generally this kind 
of algorithm consists of two steps: 

Training: a set of solder joints that  best represent 
the  class t h a t  they belong to  is chosen. Then  average 
features a re  calculated for each class. 

Classification: given the  feature vector of a solder 
joint, a distance metric of this vector with respect 
to  the  average feature vector of each class obtained 

in the  training phase is evaluated ( the  norm can be 
Euclidian norm, for example). T h e  solder joint is con- 
sidered to  belong to a class with minimum distance to 
the  feature vector of the solder joint. It is obvious 
t h a t  in order to  get acceptable performance a large 
amount of samples of each class must be available dur- 
ing training stage. This is not always possible. On the 
other hand,  this simple algorithm is unable to decor- 
relate feature da ta ,  also i t  can not identify features 
tha t  contributed insufficient information. T h e  accu- 
racy of the  algorithm is further  degraded when there 
is some clustering of classes for some features, which 
was the  case in the  solder joint inspection. T h e  poor 
performance of the  algorithm (i.e. good/bad decision 
91.8%, correct classification 70.5%) testifies the above 
observations. 

To overcome the above limitations O D R  was designed 
(See the  appendix in [4]). O D R  is a multiple class mul- 
tiple feature technique tha t  decorrelates feature d a t a  and 
automatically weights features according to their contribu- 
tion to  the  decision making process. It has been shown that  
the  ODR,  involving in this problem 9 classes 27 features, 
runs 3.45 times faster than straightforward Maximum Likeli- 
hood Multi-Variate Gaussians (MLMVG). Its detection rate 
is about  97.5% for pass/no pass decisions, and 91.3% for 
correct classification. 

An expert  system for solder joint inspection was also de- 
signed and compared to statistical classifiers. The  average 
detection rates are the  following: correct pass/no pass deci- 
sions: 96%, correct classification: 86%. It is obvious that  the 
expert  system performed better  than the  minimum distance 
classifier, but  as  was stated above O D R  performed even bet- 
ter  (see [4] for details). 

Implementation 
Intense, diffuse, uniform fluorescent light can be used 

for illumination purposes. A standard CCD and associated 
hardware, and a general purpose computer are suitable to 
capture and  process the  images. 

In situations where great amount of training samples 
are available, accuracy is of paramount importance, expert 
knowledge is not accessible, or interaction with people is 
not required, statistical systems are the best choice. Oth- 
erwise, expert  systems are more promising, specially when 
the  system has to  mimic the reasoning of human operators 
or when good heuristics for classification exist. However, a 
more sophisticated manlmachine interface must be designed 
for expert  systems so that  rule-writing becomes easier. Also 
for industrial implementation, an interface between the PCB 
design d a t a  base and the  inspection software would have to 
be built so that  the inspection system would know what kind 
of joints are present and where they are located. 

2.3 Design Data-Based Inspection for 
Printed Circuits 

In [40], a n  approach for P W B  inspection using CAD d a t a  
as a reference is presented. Unlike other systems based on 
pixelwise comparison of the  object under inspection with a 
"perfect" product ,  this system uses high level referencedata. 
These CAD files are converted into descriptions of the pat- 
tern borders. Each border description is assigned a toler- 
ance zone tha t  determines the  deviations allowed for pat- 
terns to  be  inspected. Such high-level CAD information is 
much more compact than pixel-level information. One of the 
objectives of the system is defect classification and not just 
accept/reject decisions. Following these ideas an experimen- 
tal system was built and tested. 



The system 
T h e  inspection methodology is the  following. First, the  

edges of the  printed circuit a re  detected and  approximated 
by line segments. After alignment error correction, t h e  line 
segments are compared to the  reference d a t a  a n d  t h e  dif- 
ferences found are delivered to  a n  error-analysis module for 
defect classification. Both t h e  defect detection a n d  analysis 
stages uses the  same reference d a t a  base. 

Photoplotter  files a re  used to  generate reference d a t a .  
These files describe the  wiring pat terns by aper ture  defini- 
tions , exposure, and  movement commands. However t h e  
photoplotter files d o  not contain all t h e  information needed 
for inspection because for example hole descriptions a n d  tol- 
erance d a t a  are missing. For simplicity, tolerance zones as- 
signed were proportional to  the  dimensions of the  pat terns.  
T h e  primitives of t h e  reference d a t a  generated from t h e  pho- 
toplotter file a re  arcs and  straight lines t h a t  describe the  
edges of the  pat terns.  

T h e  image capturing mechanism is rather  conventional: 
C C D  line scan camera,  x-y table, and a n  image resolution 
of 10 or 25 m m  depending on the  camera lense used. Since 
the  captured image is processed with a fixed threshold before 
further  processing, special at tention is paid to  t h e  illurnin* 
tion arrangement.  In this case, one has to detect  pat terns 
with reflowed solder coats  which show 3-D structures. For 
such materials, a combination of a n  integrating sphere and  
beam splitter was developed. 

T h e  image acquisition speed for a P W B s  is 5Mpixels/s 
a t  l O / m u m  resolution and  7 mega-pixelsls for back-lighted 
mask films at  the  same resolution. 

First, the  edges of t h e  pat terns in the  binary image are 
detected.  Then  a kind of approximation algorithm is ap- 
plied to  convert pixel-level d a t a  of t h e  edges to  higher level 
approximating line segments. T h e  approximating line seg- 
ment is s tar ted a t  a pixel and in successive scans more pixels 
a re  incorporated. T h e  line ends (and a new one begins) when 
segment's orientation departs  from 0, 45, 90, or 135 degrees 
t h a t  are principal line angles in PWBs.  This line approxi- 
mation is done in the  raster-scan mode. 

In order to be  able to  compare the  line segment approxi- 
mation against the  CAD-based reference da ta ,  corrections of 
possible orientation errors in t h e  P C B  must be  compensated 
for. T h e  allignment method  used is the  one presented in [38]. 

Two main approaches are followed for defect analysis. In 
the  statistical approach, a set of numerical features a re  com- 
puted for each defect candidate and t h e  feature vectors ob- 
tained a re  classified. T h e  experiments with the  statistical 
approach were initially based on six features of the  defect 
candidate (closed/open chain of line segments, inside/outside 
of conductor, parallel/not parallel with the  model edge, num- 
ber of model edges connected to, maximum distance to  t h e  
nearest model edge, and  minimum distance to t h e  next near- 
est model edge). 

T h e  defect classes used were shorts, opens, too wide and  
too narrow conductors, spurious copper, and holes. T h e  clas- 
sification accuracy for test material consisting of over 250 
simulated defects on a n  artwork (i.e. photomasks) was over 
85%. On the  other  hand ,  for PCBs additional features were 
needed (about  20 features in total) to obtain 80% detection 
accuracy. 

Structural  analysis was found to be  more useful in many 
cases. In this method,  the  structural  relations between t h e  
defect candidate and  the  reference edge descriptions a re  de- 
termined. A defect is classified by finding the  best match 
for i t  from among the  defect models. Matching is performed 
by means of a depth-first search similar to the  one in [14]. 
T h e  s ta te  space searching s ta r t s  with two sets of primitives, 
one for t h e  defect candidate and  the  other  for t h e  model. 
When the  search is terminated the  matches are described by 
paths from the  initial to  the  final states. Each s ta te  carries 
a weight tha t  depends on the  similarity between t h e  associ- 

ated primitives. T h e  weight of t h e  pa th  is normalized by the  
number of nodes in the  model. 

T h e  defect candidate graph is compared with each model 
and  is assigned to the  class for which t h e  minimum normal- 
ized weight is obtained. 

Experimental results and conclusions 
T h e  detection rate is about  85% for artwork and 80% for 

PWBs.  T h e  false alarm rate is high as t h e  system generally 
classifies dust  particles as spurious copper. Also, minimum 
detectable defect size is not specified. To this connection, 
line approximations of edges of t h e  pat terns introduces early 
approximation errors and  obviously limits the  minimum de- 
tectable defect size. 

3 Integrated Circuits 
There  are two principal requirements imposed upon an in- 
dustrial system for multilayer wafer inspection, namely, high 
speed and  low false-alarm rate. Due  to  high density of recent 
semiconductor devices, defect sizes tend  to  become smaller 
and smaller. Therefore, t h e  quanti ty of the  d a t a  to be pro- 
cessed makes some kind of pipeline image processor indis- 
pensable. O n  the  other  hand,  several acceptable variations 
from t h e  ideal model must be  taken into account if low false- 
alarm rate is desired. Some of these harmless variations are 
due  to  the  following: 

Random texture on wafer surface caused by shading 
due  to  uneven grains. 

Small changes in brightness and  pattern widths in 
each layer. 

Relative positional differences of pat terns in each 
layer. 

3.1 Inspection of Memory Wafers 

A system for inspection of multilayered wafers is developed in 
[45]. T h e  inspection speed achieved is about  6 minutes/cm2. 
T h e  heart of the  inspection algorithm is a self reference tech- 
nique in which two adjacent cells a re  compared and differ- 
ences a re  considered as defect candidates.  This  methodology 
exploits the  repetitive nature of cells in memory wafers. Also, 
some morphological operations a re  applied on this candidate 
"defect image" to suppress false alarms due  to noise and tol- 
erable pa t te rn  variations. Most of t h e  steps are governed by 
CAD d a t a  describing the  integrated circuit layers. All the 
image processing steps are performed in a one-pass fashion 
in a high speed pipeline image processor. 

Sensing 
T h e  image is captured using a C C D  linear array sensor 

and converted to &bit  gray levels a t  7 MHz video clock rate. 
T h e  signal is continuously fed into a Real-Time Correction 
Circuit (RTCC) and  Delay Circuit (DC) .  T h e  RTCC which is 
initialized by an est imate of t h e  repetition period, measures 
the  actual period as a deviation from the  initial value. Hence 
RTCC can adjust the delay t ime of the  One  Period Delay 
Circuit (OPDC) ,  and image signal from the  current cell A(t) 
can be  precisely registered with t h e  signal from the  previous 
cell, B(t). T h e  result of the  comparison of A(t)  and B( t )  is 
the  binary defect image which is fed t o  defect classification 
module which calculates some features of t h e  defects and list 
the  most relevant ones and stores t h e m i n  the  result memory. 

T h e  function of the  calibration circuitry is to  calculate a 
histogram and a projected distribution for a fixed area of the 
image which are used by t h e  control computer  to calculate 
parameters such as different threshold values, and coefficients 
of t h e  equation used for mapping t h e  design pattern d a t a  to 



actual  wafer pat tern coordinates. T h e  Design Pa t te rn  Gener- 
ator  ( D P G )  stores bit-map d a t a  of repetitive design pattern 
and s t ruc ture  in each layer in advance. These bi t-map d a t a  
a re  aligned with each other using the  actual displacement 
d a t a  between layers measured by the  calibration circuit. 

T h e  i n s p e c t i o n  a l g o r i t h m  
If A denotes the  current image signal, and  B i ts  delayed 

periodic counterpart ,  the  absolute value of the  difference be- 
tween A and  B is thresholded and a binary candidate defect 
image is generated. Two threshold values are used. T h e  
lower threshold produces binary images ( G l )  of larger blobs 
corresponding to true defective pixels and false alarms while 
t h e  higher threshold generates smaller blobs (G2) represent- 
ing t h e  nuclear regions of the  defects. 

G2 is broadened within the  G1 image. T h e  resultant im- 
age is further  submitted to a series of morphological opera- 
tions to eliminate noise and  unify defects. All these oper* 
tions are done in real-time with a 2-D local pat tern extrac- 
tion circuit combined with logical AND and O R  operations 
for erosion and  dilation, respectively. T h e  threshold values 
and  t h e  number of iterations of the  morphological operations 
is entirely controlled using bit-map d a t a  of the  design pat- 
terns. In this  sense, this procedure is "adaptive", since t h e  
parameters  can vary according to  the textures in each layer 
and  some other relevant information. T h e  resultant image, 
called "defect image", is forwarded to  the  defect classification 
module.  

T h e  function of this module is to  measure some proper- 
ties of t h e  defects to identify only the  fatal defects. In this 
module, the  a rea  of the  defects, and projected lengths on 
t h e  X and  Y axis are used as features. To facilitate the  task 
of feature calculation in raster fashion, some sort of shape  
filtering is used to  eliminate troublesome patterns,  this fil- 
tering operation results in a defect image with no small holes 
or downward bays. Subsequently, a kind of region analysis is 
performed to  evaluate these features. The  feature measure- 
ment circuitsoutput  these feature values together with their 
center positions. These are then compared by decision logic 
circuit with corresponding threshold values specified for each 
pattern.  T h e  location of the  defect within the  design pa t te rn  
is found and  used for classification by using simple rules. 

of undesired material. T h e  authors in [23] discuss a novel 
method for the measurement of these parameters. Some ba- 
sic requirements of a semi-conductor wafer inspection system 
is tha t  the  method must be  non-destructive and that  the  
method must have sub-micron accuracy, considering these 
requirements SEM stereo seems potentially adequate. 

SEM-based stereo sensing is quite  simple, the  stereo im- 
age pair can easily be obtained by tilting the  specimen and 
taking i ts  images a t  two different angles. However, the  prin- 
cipal computational cost relies on the  solving of the  corre- 
spondence problem. This is done mostly interactively. Once 
t h e  correspondence is established 3-D depth  information can 
be  obtained using a set of 3-D reconstruction equations, de- 
rived from the geometry of the image formation. 

T h e  technique proposed in [23] is based on matching con- 
tours of relevant points in the  pair of stereo images. The  con- 
tour matching problem is posed as an optimization problem. 
Given two disjoint sets of contours, the  contours matching 
problem consists of finding t h e  "best  match" between pairs 
of contours. The  requirement is tha t  each contour must have 
only one match, and the "best" solution is defined as a match 
resulting in the minimum difference in the  lengths of the  
matched contours. 

T h e  contour matching problems t h a t  are discussed in [23] 
are posed as binary linear programming problems that  have 
t h e  special form: max p.zi over all binary vectors x subject 
to  C.z' 5 b'. Where p is t h e  objective function coefficient 
vector, x is the  vector of variables with binary elements, C 
is t h e  constraint coefficient matrix with binary elements and 
b is the  constraint right hand side vector. 

T h e  most popular techniques for solving the  binary pro- 
gramming problems are based on implicit enumeration via 
branch and bound techniques. T h e  variant used by the au- 
thors is the one presented in [20]. 

SEM s t e r e o  c o r r e s p o n d e n c e  p r o b l e m  
Solving the stereo correspondence problem requires two 

steps: the  detection of predefined features in each image, 
and  matching of these features. T h e  predefined features are 
called matchrng prrmttives. 

C h o i c e  o f  m a t c h i n g  p r i m i t i v e s  
One has to do a careful selection of matching primitives 

I n s p e c t i o n  r e s u l t s  a n d  conc lus ions  since shape from stereo algorithms can return the depths 
T h e  system is currently used for production control of of only those 3-D object points which correspond to feature 

memory devices such as lMbi t  DRAM and 256 Kbit  SRAM points in both images. Some factors affecting the selection 
in a 1.3pm CMOS process. T h e  resolution is 0.2pm per pixel. of features include the  followinc: 
T h e  minimumdetectabledefect  is in the order of 0.6um. with . , 

an acceptable false alarm rate. The  inspection speed is re- 
ported to be  about  6 minutes/cm2. It is estimated tha t  more 
than  95 % of defects are detected. For practical purposes a 
small portion of the  wafer is inspected exhaustively and  a 
statistical decision is made. 

T h e  system has a high defect detection rate and  very low 
false-alarm rate. T h e  speed compares favorably with other  
systems such as P300 (about  an order of magnitud faster). 

3.2 Scanning Electron Microscope-Based 
Stereo Analysis 

In [23], a novel technique for analyzing stereo images gener- 
ated from SEM is presented. T h e  new method uses binary 
linear programming approach to set up and solve the  cor- 
respondence problem. It also uses constraints based on the  
knowledge of SEM image formation. The  result of t h e  appli- 
cation of t h e  method on real images of IC's is also given in 

[231. 
There  are several parameters of the  etched surface tha t  

are crucial to the  controlling of the  lithographic process, such 
as height of the  step,  slope of the side wall, and presence 

Feature points corresponding to  high surface curva- 
ture points on t h e  sample should be  used. The idea 
is tha t  the surface interpolation/approximation step 
tha t  follows feature-based stereo matching will use 
this points as  control points to fit smooth,  low-order 
polynomial patches. 

The  likelihood of t h e  presence of the  match of a fea- 
ture point in the  other  image should be high. 

It should be possible to spatially locate corresponding 
feature points in the  images accurately. 

T h e  authors used as primitives points where the curvature 
of the  image intensity function achieves a local maximum 
with a sufficiently large magnitude, (referred to as high image 
curvature points) along with intensity edges. 

C o n s t r a i n t s  f o r  t h e  m a t c h i n g  p r o b l e m  
These constraints are derived from t h e  imaging geome- 

try, the  physics of the  image formation, and the  geometry of 
the  3-D scene being viewed. T h e  proposed stereo matching 
constraints are the following: 



T h e  epipolar constraint: this constraint s tates tha t  
the  match of an image point on one epipolar line must 
lie somewhere along t h e  correspondingepipolar line in 
the  other  image. 

T h e  uniqueness constraint: this constraint s tates tha t  
for each feature point in one image there can be a t  
most one matching feature point in the other image. 

T h e  ordering constraint: this constraint s tates tha t  
the  ordering of feature points along a n  epipolar line 
in one image should be  t h e  same as the  ordering of the  
corresponding match points d o n g  the  epipolar line in 
the  other image. 

T h e  depth/height  boundedness constraint: this con- 
straint s tates t h a t  the  computed depthlheight  (or dis- 
parity) values should be  bounded.  It is based on the  
assumption tha t  objects  in the  scene have finite depth.  
This  constraint is enforced by limiting the  search for 
the  match of a point in the  other  image to only a 
section of the  corresponding epipolar line. 

T h e  surface smoothness and  figural continuity con- 
straint: the  surface smoothness constraint s tates t h a t  
the  computed 3-D surface points should not depict a 
surface which has abrupt  jumps.  T h e  figural continu- 
ity constraint enforces smoothness of disparity along 
feature contours in the  image. 

The algorithm 
It is now considered how t h e  stereo matching problem 

defined by the above specifications can be transformed into 
a n  equivalent binary programming problem. 

Each possible match of compatible left and right image 
contours is represented by a binary variable which indicates 
the  acceptance/rejection of a match respectively. T h e  num- 
ber of points tha t  are matched is considered as the  cost as- 
sociated with tha t  match. T h e  objective function tha t  is 
maximized is Cp,.z, where pi is the  cost associated with 
accepting the  contour match represented by z i .  p, can be 
chosen to count the number of effectively matching points 
on the  two contours, along with other  measures based on 
feature values that  s trengthen t h e  contour correspondence. 
T h e  constraints are in the  form of inequalities where the  vari- 
ables have a coefficient of 1 and  the  right hand side is a 1 or 
2 (i.e. they look like xi + I, + . . . 5 1 or 2). 

T h e  steps of the  algorithm are  the  following: 

Feature detection: each epipolar line in each image is 
convolved with one-dimensional Gaussian filters hav- 
ing s = 0.4 and 6.4. T h e  D O G  profiles are obtained. 
High curvature points and/or  zero-crossing points are 
detected on each D O G  profile in both images. 

Contour detection: a connected component algorithm 
is used to get high curvature points and  zero-crossings 
feature contours. 

Variable and cost of variable identification: based on 
the  "similarity of feature points" and the  "bounded- 
ness of disparity" constraints, possible matches be- 
tween feature contours and their associated costs are 
identified. A binary variable is assigned to each such 
contour match. 

Constraint generation: each of the  constraint gen- 
erators independently generate constraints between 
matches. 

Solving the optimization problem: the  resulting bi- 
nary linear programming problem is solved by divid- 
ing it into sub-problems if possible and solving each 
sub-problem using the branch-and-bound technique 
presented in [20]. 

Disparity to depth  conversion: using reconstruction 
equations the  stereo matching results are used to  gen- 
erate a sparse depth  map.  

Experimental results and conclusions 
T h e  algorithm is able to compute  depth  values only along 

the  contours tha t  were matched. T h e  problem associated to 
surface reconstruction from this m a p  is not t reated in 1231. 
T h e  most straightforward solution to this  problem is a linear 
interpolation between the  depth  values actually determined 
by the algorithm. T h e  principal shortcomings of the algo- 
r i thm is tha t  it generates only a sparse depth  map,  which 
even though provides useful information, is not enough to 
obtain a complete description of t h e  3-D surface being in- 
spected. 

3.3 Inspection of Multi-Layered Integrated 
Circuits 

A system for the  inspection of multilayered wafer patterns 
is given in [13] and it constitutes a n  example of knowledge- 
directed processing. Rules and  CAD d a t a  are used for defect 
detection and design verification. 

Images to be  processed by the  system are  fed to the  pro- 
cessing unit in a raster-scan mode a t  video rate. Also a 
design pattern totally registered with the  input  image is fed 
to the control unit .  T h e  design pattern used is computer- 
generated lithography data.  T h e  positional information of 
the pixel of the  design pattern indicates the  layer member- 
ship of i ts  counterpart pixel in the  scanned image. Given 
the spatially synchronized images, t h e  control unit generates 
suitable parameters (usually thresholds) specific to layer po- 
sition. These thresholds a re  used in t h e  segmentation of the 
patherns. 

Normally there are 3 steps involved in the  inspection of 
a product ,  namely candidate defects, "true" defect (false 
alarms suppressed), and  fatal defect extraction. T h e  last 
s tep involves some evaluation of t rue defects to see their de- 
gree of importance. T h e  input  a n d  the  ou tput  of all the 
stages are images (except t h e  ou tput  of the  last stage which 
can take other forms) so pipelined image processing seems 
most appropriate. 

Defect candidate extraction 
The knowledge for this stage has the  following form: 
Knowledge j: 
If the  pixel scanned belongs to layer i, and its gray level 

is not within allowable thresholds then the  pixel must be 
flagged as being part of a defect candidate.  

Note tha t  in this case the  feature value of the  pixel is 
simply i ts  graylevel. This scheme has great advantage in 
tha t  it introduces a natural  way of adaptive thresholding, 
since thresholds are layer dependent ,  even within each layer 
position dependent thresholds are feasible. 

True defect extraction 
T h e  resulting binary defect candidate image obtained 

contains several false alarms mainly due  to  the  following 2 
reasons: harmless texture grains and  slight alignment dis- 
crepancies between layers due  to registration imperfections 
during fabrication. To eliminate the  effect of grains the fol- 
lowing knowledge is used: 

Knowledge iI-1: 
If a pixel is within a defect candidate on layer i,  and if the 

size of the candidate is less than  r,, then t h e  candidate is a 
grain image and the pixel should be  deleted from the  defect 
image. 

A typical case arises when circular-shaped small defects 
(supposed to be grain image) must be  deleted and elongated 
candidates must be left unchanged. Note again tha t  the 



allowable grain size is adaptive in t h e  sense tha t  depending 
on each layer a suitable one can be  generated by the  control 
unit. 

To  eliminate t h e  false alarms caused by imperfect regis- 
tration between layers, i t  should be  noted tha t  discrepancies 
a re  likely to occur in t h e  boundaries of the  layers, so the  
following knowledge is employed: 

Knowledge 11-2: 
If a pixel is within a defect candidate on the  border of 

t h e  layer i, and if the  width of the  candidate is less than pi 
pixels, then the  candidate is due  to  the  pat tern registration 
tolerance and  the  pixel should be  removed from the  candidate 
blob. 

It should be  noted t h a t  bo th  processes for false alarm sup- 
pression can b e  executed in  parallel, and t h e  outputs  com- 
bined into a single true defect image. 

F a t a l  d e f e c t  c lass i f ica t ion  
T h e  input  to  this s tage is the  true defect image and the  

ou tput  can take any desirable form like a list of judgment 
results. Many types of knowledge can be  defined, one is 
given as a mat te r  of example: 

Knowledge YII-I: 
If a pixel is on t h e  CAD pattern having a width W of less 

than  a certain value, and  if t h e  actual pat tern width w is 
less than  q% of t h a t  of the  corresponding design pattern W, 
then the  pixel is a portion of a (semi of fully) open-circuited 
region. 

To  obtain statistical information on the  wafer, a defect 
classification circuit can be  used. This  circuit partitions the  
pat terned area of the  wafer and  measures such features as 
area, horizontal and vertical projected lengths of each de- 
fect involved in each partitioned area. These feature values 
classified for each layer a re  stored in the  result memory and 
after the  completion of the  scan a re  input  to a computer. 
This  method ,  unlike conventional methods which just detect 
and display defects, can indicate what kind of defects are 
most likely on what layers of t h e  Integrated Circuit. 

I m p l e m e n t a t i o n  a n d  e x p e r i m e n t a l  r e s u l t s  
Using the  above ideas an inspection machine for logic IC 

wafers has been built.  T h e  resolution is 0.5 pm/pixel. T h e  
minimum detectable size of the  defects is about  1.0 p m  ; 
detection rate is about  95%, false alarm rate is 1 for every 
100 chips. No speed performance was given. This limits 
the  comparison of t h e  system with other wafer inspection 
systems. A minimum detectable defect size of 1.0 p m  may 
not be enough, since some common defects (tiny particles) 
can have sizes of the  order of 0.5 p m  or less and still be 
harmful. T h e  two recent multilayered inspection systems by 
Yoda et al. and  P300 can achieve a minimum detectable 
defect size of about  0.6pm, 0.5pm respectively. 

3.4 P300: Memory Wafer Inspection 
An automated inspection system for memory IC chips on 
multilayered wafers is  presented. T h e  heart of t h e  algorithm 
consists of a self-reference algorithm which compares each 
pixel and i ts  surrounding relevant pixels with its periodic 
counterparts. T h e  idea is obviously applicable only to  the  
inspection of repetitive scenes like memory cells. T h e  method 
is based on a principlesimilar to  the  one used in (451 but  there 
are some important  differences. 

T h e  s y s t e m  
T h e  image signal is digitized at  a rate of 10 megapixels 

per second and produces a 480 x 512 pixel digital image. 
T h e  system has 3 operational modes: set up,  inspect, and 
review. In t h e  set u p  mode t h e  operator adjusts the  system 
parameters. T h e  inspection operation is then carried out  
automatically a n d  thesuspecteddefects  stored. In the  review 

stage, the  defects found are displayed to the operator. T h e  
final decision regarding the  fatality of the  defects is left to  
the  operator. 

T h e  i n s p e c t i o n  a l g o r i t h m  
T h e  algorithm assumes horizontal periodicity of the ob- 

ject under inspection, with period R,  and  compares each 
pixel with two pixels a t  distance R away in either horizonal 
direction. The  algorithm consists of two parts: "low-level" 
and  "high-level" algorithms. T h e  low-level algorithm out- 
pu ts  t h e  defects with false alarms, t h e  high-level algorithm 
does some noise compensation and false alarm suppression 
to  get " t rue  defects" 

T h e  low-level a l g o r i t h m  
In order to compensate for the presence of noise and allow 

small registration errors a pixel and  i ts  four adjacent neigh- 
bors a re  compared with the  left and right periodic pixels and  
their neighbors. T h e  current pixel is Co and its left and right 
counterpart  are called Lo and Ro respectively. T h e  low-level 
algorithm consists of the  application of a simple binary non- 
linear operator (GNLO).  

T h e  high-level  a l g o r i t h m  
Basically the high-level algorithm consists of repeated ap- 

plication of low-level algorithm followed by a kind of en- 
hancement applied to the  accumulated result. This has the  
effect of false alarm suppression and increases the detection 
reliability. T h e  steps comprising the high-level algorithm are 
the  following: 

T h e  same scene is imaged N times. 

T h e  low-level algorithm is applied to each of these N 
images separately. 

An accumulator image is constructed in which each 
cell has a value between 0 to N, indicating the num- 
ber of times the  corresponding pixel in the scene was 
detected by t h e  low-level algorithm to  be  a defect ( a  
value of 1 )  or not ( a  value of 0). It is assumed that  
the  random noises do not appear in successive imaging 
and  application of the  low-level algorithm, so the cells 
with higher counts can be  thought as corresponding to  
true defect image. The  simplest form of obtaining the  
true defect image is to apply a thresholdingoperation 
on the  accumulator image. 

I m p l e m e n t a t i o n  a n d  E x p e r i m e n t a l  r e s u l t s  
T h e  high-level algorithm is performed in software but  

computationally intensive low-level algorithm is supported 
by dedicated hardware. T h e  performance results given be- 
low are obtained using normal configuration of the P300 sys- 
t e m  which is thought to "optimize" t h e  trade off between 
the  3 fundamental factors in an inspection system, namely 
detection probability, false alarm rate, and throughput. Re- 
sults were obtained from testing a set of wafers having 2400 
known defects. Setting the smallest detectable defect size to 
0.5 p m ,  the  detection rate is about  96% and reaches 100% 
as the  defect size rises to about  1.5 pm.  False alarm rate 
is 0.05% per frame (based on 226,488 frames). T h e  system 
throughput is 45 seconds/mm2. T h e  system of Yoda et al. 
is about  an order of magnitude faster, with comparable de- 
tection and  false alarm rates (bu t  it obviously has higher 
cost due  to  specialized hardware to perform morphological 
operations, CAD d a t a  manipulations, etc.) 

3.5 LSI Wafer Inspection 
A sub-micron defect detection algorithm for LSI wafer pat- 
terns has been developed in [26]. The  essence of the  method 
is a variant of a comparison technique in which two grayscale 



images are aligned by their  detected edge patterns and  com- 
pared by a new algorithm called Local Perturbation Pattern 
Matching (LPPM). T h e  algorithm performs the  matching by 
shifting one image in 8 plane-directions and  in grayscale and 
finds the  best match in a local window between the  shifted 
image and its counterpart .  T h e  resulting unmatched regions 
are considered as defects. T h e  method can detect  defects of 
down to 0.3 / m u m  in photoresist patterns. 

Some other methods for inspection of single layer pat terns 
operate on binarized images obtained after some preprocess- 
ing and subsequent thresholding. T h e  authors in [26] argue 
t h a t  in order to be  able to detect  defects as  small as  resolu- 
tion limits reliably it is necessary to use the  grayscale image 
itself. Actually, gray-level based inspection of IC memory 
wafers was successfully used by two previous systems 112, 451. 

S e n s i n g  
For precise automatic focusing a stripe pat tern projected 

automatic focussing method  [15] was applied. To prevent 
interference fringes caused by film thickness changes, a xenon 
lamp was used as t h e  illumination device. 

A l g o r i t h m s  
The  concept of the  algorithm is basically identical to  a 

s tandard pat tern matching with geometrical distortion, ro- 
tation of pat tern,  and  size variation allowances. It is charac- 
terized, however, by the  following two points: 

It utilizes the  sign changes of the  subtractedimages for 
tolerating t h e  error in  normal pat terns caused by t h e  
tiny shape differences or differences in the  sampling 
position. 

It utilizes red- t ime processing with pipelined archi- 
tecture, as  all processing are executed with local op- 
erators in one pa th .  

L o c a l  P e r t u r b a t i o n  P a t t e r n  M a t c h i n e  ( L P P M )  - ,  

When there is a tiny shape  difference or a n  alignment 
error less than 1 pixel between two patterns, they are not 
matched perfectly by shifting t h e  stored image by f l  pixel. 
But  it is noticed t h a t  t h e  sign of the  subtracted image of 
the  normal edge portion changes from positive to negative 
and vice versa by the  *1 pixel shifting of the  stored image, 
while the sign of the  subtracted image of the  defect does not 
change. Therefore one can eliminate the  unmatched regions 
of less than one pixel by ou tput t ing  a zero for the  part where 
the  sign of the subtracted image changes by a f l  pixel shift. 

When there are allowable differences in grayscale between 
two patterns, the  differences can not be  eliminated by shift- 
ing the  stored image in x-y plane. Then  shifting of f a  level 
in grayscale and the subtract ion are also done in addition to 
the  x-y shifting and subtract ion operations. 

From the 10 subtracted imaees thus obtained. a value of - 
zero is output  if the  values of t h e  corresponding pixels of t h e  
10 subtracted images include both  positive and negative val- 
ues, or else, the  absolute minimum value of the correspond- 
ing pixels is ou tput  as  a defect signal. Finally the  defect is 
detected by thresholding this ou tput  gray-scale image. 

In IC inspection, it is normally recommended to sample 
the  images at  112 to 113 t h e  size of the  minimum detectable 
defects. However, optical resolution is limited and sampling 
images with very small pixel size does not improve the  res- 
olution and increases the  inspection t ime.  To shorten the  
inspection time, the  authors in 126) applied L P P M  to images 
which are created by resampling t h e  detected images with 
half-size pixels. Using this resampling technique defects as  
small as  initial sampling pixel is detected and inspection t ime 
is improved by a factor of 4. Unfortunately, no precise infor- 
mation is given on how this  general idea is actually used for 
the  problem a t  hand.  

E x p e r i m e n t a l  r e s u l t s  a n d  c o n c l u s i o n s  
At 0.24 p initial pixel size and 0.12 p resampling resolu- 

tion 0.3 p defects on photoresist were detected.  The  number 
of tests carried out  are not specifiedA apparently, the con- 
clusions of the  validity of the  method are driven considering 
a few example tests. Sensitivity of the  method to noise and 
other  "bad" environmental conditions are not reported. No 
false alarm or efficiency rate is given. 

Although not much detailed information is given in 1261 
on the  actual digital defect detection algorithm, there is a 
s trong resemblance between the  proposed method and those 
used in other  memory IC inspection systems [12, 451. 

4 Packaging Inspection 

4.1 Solder Ball Inspection in Integrated 
Circuits 

In [6], the  problem of analyzing images of solder balls in chip 
packaging is addressed. T h e  images are grabbed using the  
shadows of solder balls obtained from an oblique illumination 
technique. As these shadows are  cast on very complex and 
irregular appearance circuitry, the  segmcntation and defect 
detection tasks are difficult. Several possible methods are 
explored with special emphasis on feature-based automatic 
classification methods. An algorithm based on decision theo- 
retic classification and feature extraction has performed well 
on available data.  An architecture for fast implementation 
of the  algorithm is also shown in t h e  paper. 

One of the  popular chip packaging technologies is the  so 
called controlled collapsed chip connection (C4). In this tech- 
nique chips are placed directly on the  ceramic substrate. To 
achieve this at tachment,  solder balls are placed on the chip 
surface and  penetrate into the  chip up to the  last metaliza- 
tion level. 

T h e  quality of solder joints are given by good connectivity 
of the  chip with the  substrate which implies tha t  enough sol- 
der  must be  present. This in tu rn  imposes a predetermined 
volume, diameter  and height constraint on the solder balls. 

Several demands are imposed on a machine vision C4 
inspector. T h e  parameters to be  measured involve the ex- 
traction of 3-D information. Also, high precision estimation 
of the  parameters is necessary. Finally, computational effi- 
ciency is critical due  to  the  large number of solder balls per 
chip (about  120) and  large volume manufacturing. 

As far as  sensing is concerned, conventional methods are 
discarded, mainly because specular nature of solder balls sat- 
urates the  captured images. In particular, bright-field im- 
agery is useless since no 3-D information can be gathered 
successfully. Dark-field imagery has the  same problem of 
not yielding 3-D information. In addition, the scattering re- 
sponse of the  ball surfaces and  some interference hinder the 
measurement of other parameters such as the  diameter. On 
t h e  other  hand mechanical probing is not used because of 
i ts  severe speed drawback. In order to image the solder ball 
array properly, an oblique viewing microscopy has been de- 
signed as a sensing mechanism (see [6] for details). Shadows 
are  cast on the  surface of the  ball and  the chip. Each shadow 
is formed by two overlapping ellipses. Considering the geom- 
etry of t h e  optical se tup  with respect to the solder balls, it  
can be shown t h a t  from the  separation of the centers and the  
minor diameter  of either ellipse, a n  expression for the volume 
of the  solder ball can be obtained. Hence, the detection and 
parameter  estimation of the  double elliptical shape is neces- 
sary to  be  able to derive an expression of the  corresponding 
volume of the  solder ball. 

T h e  p r o p o s e d  m e t h o d  
T h e  first s tep  consists of dividing the  image into 121 over- 

lapping subimages each containing a double-ellipse shape. 



This simplifies the subsequent segmentation task and also 
allows possible parallelism. It also allows some "cleaning" 
of the subimages to be performed, since the largest object 
present in a subimage is the blob and the other spurious 
or noisy objects can be wiped out. Given the subimages, a 
segmentation technique based on extraction of multiple fe* 
tures for each pixel is used. The feature vector is then fed 
to a polynomial classifier to decide whether the pixel is a 
double-ellipse point or a background point. 

To extract the subimages, the fact that  blobs are aligned 
in the vertical and horizontal direction is exploited by tak- 
ing horizontal and vertical projections of the original image. 
Separating lines between blobs are located by taking the lo- 
cal minima of the  two projections. 

Next, the segmentation of the double-ellipse is carried 
out,  by working on each subimage separately. In this seg- 
mentation approach it is assumed that  first of all pixels and 
their relationship with their neighbors (i.e. texture) can be 
described completely by a set of features. Secondly, different 
objects in a given scene are considered to be different in ei- 
ther gray level or texture or both. Hence, a set of features is 
computed per pixel and this vector is fed into a polynomial 
classifier that decides whether the pixel belongs to the solder 
ball or not. Some features used in a window are as follows: 
pixel gray level, pixel energy, mean gray level, energy in the 
window, local minimum, median value, local maximum, gray 
level variance, absolute value of the gradient, differenceof the 
mean of the right and the left neighbors within the window, 
difference of the mean of the neighbors in 45 deg., difference 
of the mean of the neighbors in 90 deg., difference of the 
mean of the neighbors in 135 deg., value of the gray level 
histogram a t  the value of the center pixel, value of the his- 
togram f15 at the value of the pixel, value of the histogram 
f16 at the value of the pixel, number of pixels in the window 
with gray level greater than the mean value, number of pixels 
in the window with gray level less than the mean value), etc. 
These features are calculated within a window of 5x5, and 
are implemented in hardware easily. See [6] for more details 
on the feature computation. 

In the segmentation process, all the pixels that are not 
part of the solder ball shadow should be considered as a 
part of "the background". This can be accomplished by so 
called supervised learning which uses a polynomial classifier 
to decide which pixel belongs to the region of interest and 
which ones are in " the  background". This approach consists 
of 2 steps: 

Training phase: The polynomial classifier is adopted 
by first interactively labeling the pixels of a training 
set and then adapting the parameters of the polyno- 
mial classifier based on this set of samples. 

Runing phase: The classifier is run over the real ob- 
jects to be segmented and decision is made for each 
pixel if it belongs to the object of interest or to the 
background. For the case of two classes, a simple poly- 
nomial in the feature vector should be evaluated. 

The authors used a subset of 18 subimages as a training 
set and labeling was performed by a tablet hooked up to an 
IBM 7350. A linear polynomial classifier was then adapted. 
The adapted classifier correctly classified 95subimages. Sub- 
sequently, all pixels of 18 C4 images (120 subimages each) 
were classified. The pixel labels were stored as images and 
as a final step the largest object in those labeled images were 
selected and slightly smoothed (by a 3x3 window operation). 

Arch i t ec tu ra l  issues 
Aside from accuracy of the defect detection algorithm, 

efficiency is another key issue. In any practical system the 
"bottleneck algorithms" must be carried out by special hard- 

In a first run over the image, the histogram processors 
calculate the corresponding histograms. In the next phase, 
the feature processors compute one feature each, and yield 
a feature vector register. This register is multiplied with 
one or more classification coefficients, and the results called 
"degree of object membership" are stored in memory. The 
final segmented image is obtained by taking pixel by pixel 
the maximum among the degrees of membership. 

Conclus ions  
Although the method needs a large amount of features 

for each pixel, suitable hardware implementation permits the 
feature calculation in real-time. The ~ r o p o s e d  architecture 
is also claimed to perform pixel classification at  video-rate 
speed. The proposed segmentation technique and architec- 
ture can be used in two different ways: to  measure the volume 
of the solder balls, and for a acceptlreject decisions. For the 
first application one needs a good criterion for determining 
the accuracy of the algorithm, one possibility is for example 
the use of some destructive SEM-based technique. 

In more practical situations one may just be interested 
in a good/bad decisions. In this case, the training set con- 
taining good and bad solder balls is classified by a human 
operator, and later used to  determine which features are ap- 
propriate for goodlbad classification. These could be global 
shape characteristics obtained from the segmented images. 

4.2 Inspection of Through-Holes in Printed 
Circuit Boards 

In [3], an automatic though-hole inspection system for ultra- 
high density PWBs usingleakage light detection has been de- 
veloped. To cope with the increasing thickness of the PWBs, 
the  sensitivity of the light detector is enhanced by a factor 
of 150 using a micro-channel plate tube.  However, the tube 
caused two problems: stray light sensing and image distor- 
tion. The first problem is overcome by optically isolating the 
optics,and a distortion correction method is used to solve the 
second problem. With this system defects in through-holes 
as small as 100 pm is detected. 

The authors previously developed an automatic optical 
through-hole inspection method called leakage light detec- 
tion [2]. Masks block the entrance of light in the holes while 
the board is illuminated by bright light. The substrate trans- 
mits part of the light and if there is any defect on through- 
holes light leaks out and can be detected on the opposite 
side by a sensor. In order to  implement these ideas a per- 
fect masking system had to be invented and a discrimination 
algorithm devised to distinguish between leaked light and 
the light emitted by the substrate. Also with the advent of 
new ultra-high aspect-ratio PWBs much light is absorbed by 
the thick substrate (7mm or more) so a much more sensitive 
detection system must have been utilized. 

Complete masking is accomplished by a special roller type 
mask which can handle board warpage of rtl mm. A CCD 
line sensor detects light from the unmasked hole position. 
The location signal is delayed by Dt which is the time re- 
quired for displacement of the hole. A second sensor detects 
any light from the masked hole. The delayed location sig- 
nal and leakage light signal are AND gated. Any defect on 
the through-hole will cause the output to raise indicating 
a defective hole. Sensitivity enhancement in the proposed 
method is accomplished using a special sensing arrangement. 
A micro-channel plate (MCP) tube is inserted in front of the 
CCD sensor. This arrangement intensifies the light over 150 
times. 

MCP tube causes two major problems: image distortion 
of u p  to 5% and stray light detection which lowers SIN ra- 
tio. The origin of the stray light was found to be the location 

ware. To extract the subimages, an special pipeline architec- light transmitted through unmasked holes. As both the lo- 
ture presented in [34] can be  used. cation and leakage signals were imaged by the same lens, 



intense location light was becoming flare in the  lens and was 
captured by ultr&high sensitivity sensor. To solve this prob- 
lem the  leakage light imaging and  t h e  position sensing optics 
are separated. Also a slit is inserted to  block the  light from 
substrate and adjacent holes from reaching the  sensor. This  
arrangement eliminates the  "noisy" light. O n  the  other  hand ,  
the  image distortion is corrected using a n  address correction 
method.  T h e  distortion of the  leakage light signal is mea- 
sured before with a resolution of 20 pm.  T h e  values are then 
stored and used later  to adjust  t h e  image addresses. T h e  
resulting image is correct to within 0.5%. 

4.3 Bond Pad Inspection 

Electric testing of ICs using sharp probes on delicate 
bonding pads may scratch the  surface of t h e  pads and  even 
t h e  surrounding material. T h e  authors in [I], developed a 
system called INSPAD. INSPAD checks t h e  bonding pads 
for 3 types of common defects specified in the  MIL-883C 
standards.  Thresholding, morphological filtering and region 
extraction and analysis a re  t h e  principal parts  of t h e  algo- 
r i thm. 

Pads  are considered defect free if they fulfill the  following 
criteria taken from MIL-883C standards: 

Probe  marks must not extend beyond pad boundaries 
such tha t  they damage glassivation. This kind of de- 
fect is refered to  as a protrusion. 

large surface a rea  of inspection ( 3 m m  x 4mm) and very small 
defect sizes ( a  few pms) makes the  operator inspection a very 
tedious and  t ime consuming task. Also the  accuracy of the  
inspection is inconsistent and  is inversely proportional to  the  
degree of the  fatigue or  boredom of the  human inspector. 
Furthermore, human operators a re  unable to  properly verify 
dimensional characteristics of disk heads. 

5.1 Automated Visual Inspection of Disk 
Heads 

In 1361, t h e  problem of digital visual inspection of thin film 
disk heads is considered. orting As far as  resolution is con- 
cerned t h e  authors in [36] propose ZPm/pixel as  sufficient for 
defect detection. This  implies t h a t  if only one image has to  
be taken, a wide lens is necessary, and  a 2K x 2K image have 
to be  dealt with. As in the  prototype stages conventional 
hardware is used, several images has to  be  taken in order to 
cover t h e  whole scene. Furthermore, as  defects have great 
differences in illumination responses, dark field and bright 
field microscopy is used which doubles t h e  number of images 
to  be  taken, hence t h e  efficiency of the  inspection algorithm 
has paramount importance. 

Because of the  small number of defective samples avail- 
able, t h e  existence of position-based defects, and the  need for 
some local shape  analysis, conventional statistical classifiers 
are not suitable. Instead, a rule-based approach was used. 

Algorithms 
Scratches O n  the  bond pads must not exceed 50% of AS pipeline architectures seemed promising, algorithms 
the  pad width. amenable to  raster scan implementation were searched for. 

T h e  probe marks must not exceed 25% of the  bond 
pad area. 

INSPAD algorithm 
It is assumed tha t  the  sensing system is already aligned 

with the  bond pads. T h e  algorithm uses simple image anal- 
ysis techniques. To achieve defect candidate identification, a 
thresholding technique is used in which t h e  pixels are sorted 
according to their gray level intensity and  totals a re  calcu- 
lated for t h e  s u m  of 20% brightest and  20% darkest pixels, 
and  t h e  threshold is chosen as the  average of these two sums. 

Defect identification is performed by eliminating noise 
(false candidates) from the  thresholded subimages (each 
subimage contains a bond pad).  This  is achieved by apply- 
ing morphological operations using a 3 x 3 unit window a s  
the  structuring element. Once t h e  "true" defects are identi- 
fied, region extraction is performed and the  properties of the  
defective regions are calculated. These include features such 
as area of the  probe marks. To check for the  protrusions, a 
window of a given tolerance is checked around the  borders 
for any probe mark protrusions. 

Experimental results and conclusions 
T h e  images are obtained from color polaroid photographs 

from a n  optical microscope. T h e  computer  used is a n  
APOLLO DN-4000 workstation. 

Just 37 sample bond pad images are used, with this small 
set of samples 100% detection rate is reported. Also the  
algorithm proved robust in the  presence of noise, illumina- 
tion variation between different images, illumination gradient 
within t h e  same image, different bond pad sizes and shapes. 
T h e  efficiency is reported as 2 to  3 seconds per bond pad. 
No false aiarm-rate is reported. 

5 Disk-Head Inspection 
T h e  inspection of finished air-bearing surface of disk heads is 
done by human operators using microscopes. T h e  relatively 

T h e  main algorithms consisted of the  following stages: 

Shading correction 
Due to  the  non-uniformities in the  response of the  cam- 

era, some shading effects were noticed. After linearizing the  
response of the  system to  the  light source, we can assume a 
linear pixel by pixel model for shading correction of grabbed 
images. T h e  following formula expressed the  applied correc- 
tion: 

where B and  C are  t h e  "bias" and  the  "correlation fac- 
tor" images respectively; I is the input  and  II the  corrected 
image. T h e  bias image is obtained by closing the  camera cap  
and grabbing a frame. Correction factors are obtained from 
digitized images of nominally uniformly reflecting or scat- 
tering surfaces for bright and dark field images respectively. 
T h e  uniformity of these surfaces should be preserved after 
they a re  imaged by t h e  sensing system. Obviously in t h e  
presence of shading effects t h a t  will not be  the  case. Details 
on t h e  way correction factors can be computed in darkfield 
microscopy can be found in [36]. 

Boundary fitting and part location 
Detection of boundary flaws involves some local measure- 

ment such as intrusion of a chip, and  some global measure- 
ments such a s  width of the  rail. Also, the  extraction of 
boundary pixels is non trivial because of much noise and  
different textures of the  surface. Rather,  a n  ideal boundary 
is fitted to  t h e  noisy edge d a t a  based on a prtort  knowledge 
about  the  disk heads. A method such as Hough transform 
seems promising. 

T h e  authors in [36] reported a novel technique for com- 
putat ion of straight-line Hough transform in pipeline archi- 
tectures. T h e  outline of the  algorithm is as  follows: A coor- 
dinate reference image can be  generated a t  any orientation: 

R ( t , j )  = t runc(at  + bj)  V p t x e l ~ ( t , j )  



where a and  b are constants. Further operations in the  
above equation can be  approximated using look u p  tables, 
avoiding floating point computat ion and increasing efficiency. 
T h e  image R represents a family of lines. This  image and  a 
binary gradient image 61 a re  fed together to  a histogrammer 
where: 

Hist(R(1,j)) = Hist(R(t , j ))  + 6I(i ,  j) 

is computed for each pixel. Both equations given above are 
computed in t h e  raster scan mode and  they can be pipelined 
since after R(i, j) is obtained,  i t  can be  used by the  his- 
togramming function. If these operations are realized in one 
stage of the  pipeline t h e  image 61 can be  forwarded to  another 
identical stage where a different orientation is calculated. 

M u l t i c o l o r  p o l i g o n a l  m a s k  g e n e r a t i o n  
A technique for generating multicolored polygonal masks 

in pipeline architecture is also presented in [36]. For more 
detailed description see [35]. 

Conventional graphics techniques to solve this problem 
in pipeline processors have strong drawbacks because these 
methods need random access of image planes, manipulation 
of pixel coordinates, and  specialized raster-fill logic. T h e  
authors have implemented a novel method which overcomes 
the  above limitations, and  uses similar hardware resources 
as the Hough transform implementation. 

T h e  method to  obtain coloring in pipeline architectures 
consist of two steps: 

Create a digital convex tessellation of the  plane using 
t h e  boundary lines found by the Hough transform, 
and those corresponding to inspection specified areas. 

Reconstruct polygons and  segments of interest by as- 
signing t h e  same code to all pixels belonging to  each 
of their fractions in t h e  tessellated image. 

Both steps can be  accomplished in pipeline architectures - - 
by using t h e  same coordinate reference generators, look u p  
tables, and  ALUs introduced for Hough computation. T h e  
final coloring of the  polygon is obtained by a single look 
u p  table operation on the  tessellated image. To accomplish 
this, one should know a priori the  codes in the tessellated 
image which correspond to  the  polygon of interest. This  
information can be computed off line. 

S e g m e n t a t i o n  o f  b r i g h t  f leld a n d  d a r k  f leld im- 
a g e s  

For each zone, bright field thresholding is performed by 
a simple algorithm based on pixel histograms. On the  other  
hand,  images and defects in dark field imagery are typically 
textured. Therefore some preprocessing is done before tak- 
ing the  histogram. Start ing from a shading corrected dark 
field image, repetitively apply the  following operations: lo- 
cal minima of the  previous image in a 5 x 5 window, and ,  
local average of t h e  previous image in a 5 x 5 window. T h e  
first operation tends to cluster and  expand the low pixel val- 
ues, while the  second avoids noise propagation, and reduces 
variances of each class. After about  3 iterations, a histogram- 
ming operation follows and  a heuristic threshold detection is 
used. 

F e a t u r e  e x t r a c t i o n  a n d  d e f e c t  classif lcat ion 
For each segmented object  geometrical features are com- 

puted. These features are size features (e.g. area, perimeter), 
position features (e.g. centroid), shape features (e.g. area- 
touchsize), and gray level features (e.g. mean gray-level). 
T h e  defect classifier uses object  size, shape, position, and 
gray-level features to decide on defect type. A careful com- 
bination of known pa t te rn  recognition approaches is used. 

T h e  classifier was implemented based on rules. The  condi- 
tion part  of the  rules is a combination of features that  char- 
acterize a defect class. T h e  action part selects a class for the  
object .  

T h e  s y s t e m ,  e x p e r i m e n t a l  r e s u l t s ,  a n d  conc lus ions  
T h e  system consist of an X-Y table, bright and dark field 

optics, a microscope with COHU 5000 T V  camera, a DeAnza 
image processor, an special pipeline image processor, called 
RIPS, and  a Motorola 68000-based general purpose com- 
puter. 

Extensive experiments were performed and  the  following 
conclusions were drawn: 

False positive rate was extremely low. Gener- 
ally no critical defect was missed. However, miss- 
classification rate for voids and dirt particles was 
about  25%, but  the same problem occurs with human 
inspection. 

Execution time is in the order of 3.5 to  7 minutes 
per  disk head. It is estimated tha t  if a bet ter  optics is 
used together with long pipelines for part location and 
color mask computation, and a more powerful RIPS- 
type  architecture, process time can be reduced to a 
few tens of seconds. 

6 Inspection of Metal-Based Parts 

6.1 Inspection of Aluminum Castings 

In [8], several possible approaches to x-ray image analysis of 
cast aluminum wheels are described. Emphasis is given to 
the  segmentation task through extraction of local features 
and  t h e  subsequent pixel classification problem. Some ex- 
perimental results are also reported. 

Typical requirements for x-ray inspection of industrial 
parts ,  for example aluminum wheel castings, are 100% de- 
tection rate,  minimum defect size detectability of l m m  in 
critical regions. Low false alarm rate because of cost con- 
straint .  In such parts defects are generally due  to cavities 
caused by gas bubbles or shrink holes, they occur isolated or 
in groups. They appear in x-ray images as small light blobs 
since in these regions the material is slightly thinner. 

Presently, the  inspection task is carried out  by human 
experts ,  for short periods (best performance) they inspect a 
piece in  15-90 seconds. 

T h e  e x p e r i m e n t a l  s y s t e m  
Generally any automated x-ray inspection system consists 

of 4 parts: piece handling mechanism , x-ray tube,  sensor, 
and  t h e  image processor. T h e  handling mechanism should 
allow a good repeatability of the  objects position, typically 
f 2 m m  or less. T h e  focal spot size of the x-ray tube  must be 
chosen according to  the resolution desired. For l m m  flaw de- 
tection, a resolution of 0.4mm x 0.4mm was found adequate. 
T h e  sharpness of the  image and the magnification depends 
on the  distance of the tube  to the object and object to the  
sensor. Two different sensors have been studied, a 14" im- 
age intensifier and a linear array of scintillator-photodiode 
elements which consists oi  512 identical detector elements 
with l m m  pitch. T h e  dynamic range is about  1000. T h e  
d a t a  are digitized as 12-bit values , which are later com- 
pressed to  8-bits. Image intensifiers are used because they are 
well-matched to the  x-ray spectrum used for scanning alu- 
minum parts, they have good spatial resolution and are more 
available in the market. However linear array of scintillator- 
photodiode elements have bet ter  dynamic range and have 
more quantum efficiency for harder x-rays. 

A l g o r i t h m s  



Image preprocessing but for a more complicated ones like corners or ridges this 
Before segmentation, some preprocessing of the  image is method does not have enough discriminating power. There- 

necessary to  compensate for fixed pattern noise and t h e  ex- 
ponential characteristics of t h e  x-ray attenuation process. 

Nonlinear gray value transform: This transform im- 
plemented as a look-up table operation establishes an 
approximate linear relationship between the  gray val- 
ues of t h e  resulting image and  the  thickness of the  
penetrated object .  This  look-up table is a function of 
t h e  parameters  of t h e  imaging system and  the  object  
under inspection. 

Linear shading correction: T h e  following method is 
used to perform the  correction. Before inserting the  
object  into t h e  x-ray device, a low intensity image 
and a high intensity image of a homogeneous target 
are produced. From these two reference images off- 
set and gain correction matrices a(i, j) and  b(i, j )  a re  
computed,  assuming a linear relationship between x- 
ray intensity and  grayvalues. Matrices a(i, j) and b(i, 
j) are used for a linear transformation of the  gray val- 
ues gi(i, j ) ,  with individual coefficients for each pixel: 
gs(i ,1)  = a( t ,1 )  + g i ( i , l )  * q t , l )  

Image segmentation 
Segmentation is studied from t h e  view point of local fea- 

tu re  extraction and  subsequent pixel classification. In the  
following, the  problem of two-class pixel classification is con- 
sidered and  used for segmenting areas of interest in aluminum 
castings. 

A) Features from image subtract ion techniques 
Features such as gray level difference between a n  "ideal" 

object  and  object  under inspection can be  useful for classifi- 
cation. Such techniques suffer seriously due to very precise 
registration requirements and  d u e  to  the  fact tha t  some me- 
chanical tolerances do exist which may cause the  image com- 
parison technique to  produce large false alarms. To eliminate 
these inconveniences, Decker [ll] applied a flexible matching 
technique, where the  image under  test is warped prior to  sub- 
t ract ing i t  from the  model image. In addition the  two images 
a re  band-pass filtered prior to warping and  subtraction. T h e  
method,  however, is computationally costly and can still fail 
if mechanical tolerances are large enough. 

B)  Features from linear filtering operations 
Enhancement of t h e  flaws and  suppression of regular fea, 

tures of t h e  image can be  achieved by using linear filters. 
Two examples are: unsharp masking and convolution with a 
difference-of-Gaussians ( D O G )  kernel. T h e  cutoff or band- 
pass frequencies respectively, must be matched to the  average 
size of the  defect. For noise reduction purposes it is recom- 
mended to  work with large kernels. This  technique works 
well with images which d o  not have sharp edges. Despite of 
this drawback, linear filtering can be  quite  successful. T h e  
reason probably is d u e  to  the  fact t h a t  DOG filters seems to 
be quite  close to  the  optimal linear filter for t h e  type of t h e  
flaws usually encountered. 

C) Features from nonlinear filter operations 
Only median filters has been studied.  A median filtered 

image can be subtracted from the  original one yielding good 
flaw signal; but  the  success depends on shape and orientation 
of the mask used. T h e  result is good if for median compu- 
tation a set of pixels is used which lie on the normal to the  
local edge direction. One  approach [24] could be  to  design fil- 
ters according to  the  regular features encountered in a given 
region of the  image. 

D )  Features derived from a local flaw model 
In (421, [43] a n  approach of a parameterized structurally 

isotropic flaw model for cavities has been presented, where 
the  parameters of t h e  model are used as features. T h e  fea, 

fore a prtort  knowledge about  the  location of regular struc- 
tures (e.g. rim of the wheel) were proposed along with fur- 
ther  processing. This enhanced method worked well with 
low-noise images but  had difficulties in noisy ones. 

E)  Combination of orthogonal, isotropic local features on 
t h e  basis of training sets 

All the  approaches discussed above suffer from a limited 
scope of application. A more reliable technique would be the 
explicit local feature selection and classifier design. Polyno- 
mial classifiers [7] have been studied by the authors where 
basis local featiris are combined linearly or quadratically to 
form discriminant features for each class k. This approach 
has been used successfully in a number of applications in 
industrial inspection (see for example [33]). 

When selecting features for combination, it is desirable to 
have basis features tha t  a re  isotropic and  orthogonal. Zernike 
polynomials are used for aluminum casting inspection. Sub- 
sets of the  4 lowest order Zernike polynomials are used to 
compute  discriminant features with linear or quadrat ic  com- 
bination of the  basis features. T h e  discriminant features are 
then thresholded to  obtain segmentation results. Experience 
shows tha t  the  linear combination of second and third order 
Zernike polynomials when thresholded appropriately, gave 
the  best segmentation results. 

Pixel classification 
Various methods for local feature extraction in aluminum 

casting x-ray images were discussed in the  previous sections. 
T h e  simplest method for classifying pixels into given classes 
is by threshoiding the  discriminant feature image. In the 
two-class classification case, this thresholding assigns a label 
to the  flaw pixels and other to the  background. Here the  
selection of an adequate threshold is the  major concern. 

Another alternative is classification by blob expansion. 
It consists of detection of local maxima in a feature image 
followed by blob expansion process. Two variant of this pro- 
cess have been studied. In one case blob expansion is done 
on the  D O G  filtered feature image and in the other directly 
on t h e  discriminant feature image. Experiments show tha t  
t h e  first method gives superior segmentation results. The  
fatal detect detection then proceeds by obtaining features 
pertaining to defect-blob candidates such as area and av- 
erage contrast which are sufficient to discriminate between 
allowable and  fatal defects. 

The prototype 
An automated x-ray inspection system has been built for 

a car manufacturer. In this system, a linear filter is used to 
generate t h e  feature image, a blob expansion process uses as 
seeds pixels which are flaw candidates. The  thresholds used 
are context dependent .  

Several hundreds of tests were carried out  on different 
wheels. T h e  detection of the  simple casting voids was 92% 
which gives near 100% detection rate for bad wheels since 
these generally contain voids in clusters. False alarm rate 
was reported to be around 4% per wheel and can be lowered 
to  1%. However, efficiency rate of human experts is bet ter .  
There  a re  some defects tha t  cannot be detected by the afore- 
mentioned methods; such is the  case for a defect in the form 
of a very large blob so tha t  the  whole spoke is missing. This 
and other  issues like dimensional vatlation verifications call 
for a higher level analysis. 

6.2 Inspection of Rolled Metal Surfaces 

In [32], a prototype of an automated on-line metal strip in- 
spection system is described. T h e  system can detect and 
classify surface defects of copper alloy strip, though it can 

tures are combined linearly based on heuristic assumptions. 
For simple structures such as edges this method works well, 



be  extended easily to  steel s tr ip inspection. Extensive mor- 
phological preprocessing and  statistical and structural  defect 
recognition is used. T h e  image analysis is carried ou t  in com- 
mercial modules. 

A metal  s t r ip  is generally a 0.3-2.0 m wide and  0.1-5.0 
m m  thick shiny metallic bond. Surface quality is presently 
inspected by human experts  which suffer from well-known 
inspection inconsistency a n d  other  problems. 

As many as 20 different surface defects such as spills, 
scratches and  roll marks can be  distinguished. T h e  criteria 
commonly used to decide if a surface has fatal defects basi- 
cally depends on  types of t h e  defects , maximum number of 
defects per  surface area,  a n d  t h e  total number of defects on  
t h e  inspected strip. Also such factors as the  customer and  
t h e  use of t h e  s t r ip  can play a n  essential rule in t h a t  decision. 

Some digital visual inspection systems have been designed 
ior  this  purpose, bu t  they are generally able to  detect  candi- 
d a t e  defects, "true" defect recognition and  evaluation is done 
by human operators. 

T h e  computat ional  requirements for s tr ip inspection a re  
severe. Typically, t h e  str ip is l m  wide and  moves a t  the  rate 
of 1.5 m / s ,  min imum defect size is in  t h e  order of l m m ;  also 
both sides of t h e  s t r ip  must  be  inspected, this amounts to 3 
mega-pixels/second. 

The system 

Sensing 
Halogen light sources and  1024 pixel line scan camera 

were used. In this  configuration t h e  viewing angle can be  
tuned  to optimize the  detection of the  most critical defect 
types. For copper strips a viewing angle of 2.5 deg. was 
found optimum for t h e  detection of longitudinal spills, while 
in t h e  cold rolled steel inspection viewing angle of 5 deg. 
enhanced t h e  detection of several defect types. 

T h e  illumination arrangements, aside from improving 
sensitivity to  certain defects, discriminate between 2-D and 
3-D defects. 2-D defects are generally seen darker than  the  
background since t h e  dimmer prevents direct specular re- 
flection to  t h e  camera. O n  t h e  other  hand 3-D defects are 
generally characterized as having sloped parts, so they are 
seen much brighter. 

Inspection algorithms 
In order to find t h e  low contrast regions, the segmentation 

algorithm uses knowledge about  their expected dimensions, 
shape  and  orientation. 

Segmentation 
A kind of morphology-based dynamic thresholdingis used 

to obtain separate background images for light and dark 
blobs by applying opening and closing operations to  t h e  im- 
age [39]. T h e  images so obtained are used to  determine 
t h e  light and  dark threshold levels for the  original image. 
T h e  gray levels between the  thresholds are classified as back- 
ground. In practice, material dependent  thresholds a re  cho- 
sen as a fixed percentage above or below the  light or dark 
background respectively. So the  thresholds depend on the  
size , shape  and  graylevel of t h e  associated blob. 

Blob classification 
A connected component  analysis is performed on  t h e  seg- 

mented image t h a t  calculates size, shape and orientation fea- 
ture for each blob. Structural  information of defects is im- 
portant  to classify a candidate blob as a t rue defect. For 
example, a spill consists of several blobs si tuated close to- 
gether  and distributed in certain orientation. One solution 
to the  structural  defect recognition problem is to  describe 
defect candidates and their model as  semantic networks [41]. 

An "edit  distance" is defined between the  two semantic net- 
works which measure the  effort needed to transform candi- 
da te  network to model network. T h e  defect is classified into 
t h e  class for which the minimum distance is obtained [14]. 

T h e  structural  model described above is not fully satisfac- 
tory for all defect types. In addition another method is used 
which groups nearby blobs in a window and calculates fea- 
tures of t h e  window and the  included blobs. Some features 
are: width, height and area of t h e  surrounding window, total 
a rea  of the  blobs, number of blobs in the  window, and dis- 
tance to  the  nearest neighbor group. This  method enhanced 
t h e  accuracy of the  classification of certain defect types. 

After classification stage t h e  str ip is accepted if the  total 
number of defects per  unit of surface is less than a threshold 
and  no  fatal defects are detected. Next, the  quality class of 
t h e  str ip is determined considering types and density of the  
defects. 

Implementation and experimental results 
T h e  image consists of 512 x 512 8-bit pixels. Resolu- 

tion is about  Imm/pixel .  Most image processing is done 
by hardware support .  T h e  system is realized by Max Video 
D a t a  Cube  Inc., Peabody, MA) and  APA-512 (Vision Sys- 
tems Itd., Adelaid, Australia) machine vision modules (Data  
Cube  87, Burford 87). T h e  CPU is based on t h e  Motorola 
M68020 microprocessor. T h e  system is pipelined, a control 
unit  synchronizes t h e  operation of the  units. 

As far as speed is concerned, the  t ime consumed by the  
prototype system to inspect a 512 x 512 image is 450ms, 
even though it is estimated tha t  t h e  system can be u p  to 8 
t ime faster if more morphology-oriented hardware is added. 

T h e  system was tested in the  laboratory and in a cutting 
line of cold rolling copper mill. Several hundreds of copper 
and  steel strips was tested which contain different types of 
defects. 

T h e  system showed low false alarm rate. The  illumina- 
tion scheme proved to cu t  down false classifications by half 
compared to a conventional bright-field imagery. 

T h e  classification of large defects such as scratches worked 
well with "statistical defect classification" technique, but  
small area defects such as spills were not classified correctly. 
Structural  recognition technique greatly enhances the per- 
formance in these cases. 

T h e  detection rate for the  case of the  spills is about  90%. 
Some further  conclusions show tha t :  

No false alarm rate is given. 

No clear detection rate for all classes (or the average) 
is given. 

T h e  later versions should improve the  detection rate, 
90% seems a low rating for industrial inspection. 

It is not clear what is the  average detection rate of the  
human experts in the  case of metal  s tr ip inspection. 

0.5 mega pixels per second is not good enough speed 
for real t ime inspection of the  metal strips, according 
to the basic inspection requirements this rate must be  
increased to about  3 mega pixels per second. 

7 Other Inspection Areas 

7.1 Carpet wear assessment 
Appearance retention is very important  as  far as  carpet qual- 
ity is concerned. So far this is judged subjectively using 
assessment of panels of judges. Subjective methods have se- 
rious consistency problems. 

Wear in the  carpet  is principally manifested as surface 
roughness, pile flattening, shedding of fibers, and,  loss of 



color and  pattern definition. A method for plain, 100% wool T h e  carpets  were submi t ted  to  artificial wear using a 
carpe t  wear assessment using image analysis techniques is Hexapod Tumber Tester. For t h e  Kilmarnock and  Standard 
developed in [37]. T h e  effect of the  pat terns on the  carpet  is 9 carpets, six images were captured from samples of carpet  
not  investigated. Four sets of different carpets  were submit-  exposed to  0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, and  3.0 hours of 
ted to  experiments. test. 

For Cellini and  Pastel Weave six images were captured 

F e a t u r e s  u s e d  from samples of carpets  exposed to  0, 1, ..., 6 hours of test. 

Numerical features on t h e  second-order gray level statis- For each feature and carpet  sample,  absolute percentage 
change in feature values with respect to  unworn control sam- tics on t h e  first-order gray level difference statistics, a n d  
ple were plotted against durat ion of t h e  test. 

other  features a re  studied. T h e  usefulness of these featuresin 
t h e  discrimination of the  dearees of wear a re  analyzed. Some T h e  analysis of the  results revealed t h e  following: ., 
features varied significantly when carpets  a re  submi t ted  t o  , anal  all^ there are 3 stages in the  wear process, 
2 hours (for s tandard 9 and Kilmarnock) and  4 hours (for 
Cellini and  pastel weave) (see [37]). r Different features have different distinctive power on 

different types of the  carpets .  

G r a y  L e v e l  Di f fe rence  M e t h o d  ( G L D M )  Some of the  features belonging to t h e  same class are 
A set of features based on absolute differences between found to  be  strongly correlated. Only a representative 

pairs of gray levels has been calculated. Let d = ( A x ,  A y )  b e  feature from a correlated set  is used. 
adisplacement,  define f l ( z ,  y)  =I f ( z ,  y)- f ( z + A x , y + A y )  I 
. Let P' be  the  probability density function of f i .  Wi th  

Features extracted from NGLDM were found to  have 
strong classification power. 

N g  gray levels this takes the  form of Ng-dimensional vector 
whose i th  component is the  probability t h a t  f ' (x ,  y )  will have It is believed t h a t  this kind of image analysis tech- 
value i .  One can compute P' from f by counting t h e  number  niques for carpet  assessment is superior to human 

of times each value of the  f i ( x ,  y )  occurs. judges. 

It can be  seen tha t  the  coarseness of a te:ture can b e  me* 
This method can be  applied basically in two areas: 

sured from the  distribution of values in P . If t h e  texture carpet  grading and quality control in carpet  manufac- 
is coarse and  d is small compared to  texture element size, 

turing. 
f ' ( z ,  y )  is usually small and the  values in P' will be  con- 
centrated a t  i = 0. On the  other hand for fine textures a n d  
d comparable to element size P' shows much wider spread. ReferenceS 
Several features extracted from Pi are  found useful, such as 
contrast, angular second moment, entropy, etc. [37]. [I] M. Ahmed, C.E. Cole, R.C. Jain,  a n d  A.R. Rao. IN- 

SPAD: A system for au tomat ic  bond pad inspection. 

G r a y  leve l  R u n  L e n g t h  M a t r i c e s  ( G L R L M )  
Let P ( r ,  I) be  the  number of runs of length 1 in some given 

direction 00, of gray level t ,  consisting, in this case, of points 
whose gray levels lie in the  range 0-20. A number of discrim- 
inant  features a re  defined based on this function, considering 
t h a t  coarse textures tend to  have many long runs while fine 
textures are characterized by having a higher proportion of 
short  runs.  

N e i g h b o r i n g  G r a y  L e v e l  D e p e n d e n c e  M a t r i x  
( N G L D M )  

NGLDM is calculated considering the  gray level relation- 
ship between each pixel and its neighbors a t  a distance do.  
This  is a N g  x N r  matrix where N r  is the  possible number 
of neighbors to a pixel. For a given do ,  and a threshold To, 
NGLDM can be evaluated by counting the number of times 
the  absolute value of the difference between each element's 
gray level and i ts  neighbors is less than or equal to  To. Ob- 
viously features extracted from NGLDM are  isotropic (for 
simplicity NGLDM i a  denoted by Q). 

T h e  distribution of Q reveals some information on t h e  
coarseness of the  texture.  T h e  election of adequate do, To is 
problem dependent .  Some useful features extracted from Q 
are  suggested (see [37] for details). . - 

E x p e r i m e n t a l  r e s u l t s  a n d  c o n c l u s i o n s  
T h e  sensing device used is a Hitachi color camera  VK- 

C1500E, which has an iris and a solid s ta te  MOS sensor. 512 
x 512 x 8-bit monochromatic images are generated using t h e  
matrox MIPS 512M image processor. T h e  computer  used is 
a Vax 111750. 

T h e  most adequate illumination arrangement to grab im- 
ages of good contrast, is to use four 100 Watts  lamps placed 
a t  t h e  corners of a 700mm x 450mm rectangle and a t  an 
angle of 28 degrees relative to the plane of the  carpet .  
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