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ABSTRACT

A method ot anmalyzing 30 range images
Z(x,y) 1s described and 1llustrated. Prior know-
ledge of object models and scene content 1s not
used. The strategy uses a mixture of anmalytic
and image processing techniques. A pixel or
surface element ("surfel') in I(x,y) has eiaght
degrees of freedom, of which I, %, and y are
given, and the remaining five are computed. The
surfels are classified and the resultant facets
are analytically "relaxed" and labelled., giving
an image of facet labels Lf(x,y). Lf(x,y) 15
processed for edges and corners, and the facets
are grouped ("conceptual generalizations").
Lists of facet surface parameters, edges and
edge parameters, corners, facet edge shapes,
and view-independent primitives are obtained,
including various adjacency graphs. Ample infor-
mation is made available for object learning,
knowledge base construction, and object recog-
nition. Considerable computing is required and
the method can be practical only in a multi-
computer environment or on special hardware.

INTRODUCTION

The detection of depth from pairs and se-
quences of gray level images 1s a complex prob-
lem. This complexity is very elegantly side-
stepped by the 30 (laser) range finding scanner
which provides distance readings directly, and
also delivers gray level data and, if desired,
colour information [1]1. There are several other
ways of detecting the range from an observer to
the surfels in a scene [2]. The range finder is
an "active" scanner, i1.e., it provides 1ts own
light source (a laser) to 1lluminate the scene.
Due to its "active' nature, such a scanner is
not suitable when the observer wants to remain
concealed, and it is dangerous to eyes. The
light beam has to be scattered adeguately by
the nearest surfels in the scene to produce
detectible return signals. Hence, the surfaces
of transparent objects, reflective surfaces,
and also "furry" surfaces create problems since
the return signal may be absent or appear to
"come" from the wrong "place'. Where the range
scanner can be used, it is a very useful device
for computer vision. The analysis of range ima-
ges 1s rather straight forward since range data
are physically meaningful and unambiguous, name-
ly. the distances from the camera to points on
the surfaces of objects in the scene.
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Differential geometry may be considered to
be the theoretical foundation for the analysis
of range data [3]. However, even though the
required processing steps are theoretically
well defined, there is a difference between
theory and practice. Theoretically, the range
image i1s a function of the form G(ul,u2) of the
two surface coordinates ul and u2. The function
G(ul,u2) is assumed to be "sufficiently dif-
ferentiable" to suit the theory. In practice,
the range image is a spatially quantized func-
tion of the form Z(x,y). Z(x,y) is a matrix of
tabulated orthogonal distances I from the plane
of the camera to some surfel (x,y) in 1image
coordinates. Z(x,y) is neither noise free nor
is 1t "sufficiently differentiable" since 1t
contains discontinuities in 1 wvalues at unknown
locations in the (x,y) plane. These we call the
"edges" and "corners'" of objects, while the
"sufficiently differentiable" regions are the
smooth facets in the scene. Only after conside-
rable processing can the smooth facets be ex—
pressed as functions of the form Z = fix,y),
from which point onwards differential geometry
and analytic technigues become directly applic-
able. Due to limited space, it is impossible to
describe and list all the efforts and authors
concerning range images. Summaries may be found
in, for example, [4,5,6,71.

A STRATEGY

The usual approaches to image analysis are
chosen by need, convenience, and convention,
since there is no well formulated theory. Furt-
hermore, 1t 1s nearly always assumed that there
are only a few objects in a scene and that the
objects can be found by some model matching
technique, given enough constraints. 0f course,
since object recognition requires same prioc
"knowledge'" oi the object, the final stage of
any recognition scheme consists of comparing
the '"knowledge" with the information extracted
from the scene. However, a pure "top down' pro-
cess results in a combinatorial explosion, and
a pure "bottom up" procedure generates a profu-
sion of "features" the combinations of which
also "explode". The Z(x,y) image is no excep-
tion. However, the Z(x,y) information has only
one unique interpretation, namely, I is the
orthogonal distance from some reference (x,y)
plane to the nearest surfel in the scene. 7 is
independent of surface properties and colour.
The author has approached this problem as fol-
lows, see Figure 1:



IAPR Workshop on CV - Special Hardware and Industrial Applications OCT 12-14, 1988, Tokyo

(1) Z(x,y): Original image.

23 S;r{el features.

(3) Plxel classification and
preliminary segmentation.

(4) A;alytic relaxation.

(5) h%jaceney graphs.

(&) Edge and corner label image and
analytic edge features.

7 Pilmxtive invariants.

(8) F;cet shapes 1n normal view.

(9) Cénceptual generalizations.

1o ;augh geometric models.

Laarnlnq and recognition <{--> KB

Figure 1: A brief sketch of the processing stra-
tegy. KB is the knowledge base.

1) Premises: For generality, the scene content
ie assumed unknown and no constraints are placed
on the number, size, position, orientation,
shape, and overlap of the objects. The methods
must not require prior knowledge of object mod-
els. This dictates a "bottom up" or "data dri-
ven" approach but the "explosion" of primitives
is to be avoided. Adequate spatial resolution
and the existence of smooth and opague surfaces
in the scene are assumed.

2) Surfel features: Given the I(x,y) image, com-
pute the remaining five degrees of freedom (DOF)
at each surfel. The basic parameters for a sur-
fel are its position (x,y,Z) expressed as
Z(x,y), its unit surface normal vector N(x,y,Z),
and the maximum surface curvature kKl(x,y,Z) and
the minimum surface curvature k2(x,y,Z). The
surface curvatures k1 and k2 are scalars with
an arbitrarily defined sign. The maximum (k1)
and minimum (k2) are orthogonal, and directed
as indicated by the corresponding unit vectors
Ulix,y,2Z) and U2(x,y,2). The vectors Nix,y,Z],
Utitx,y,2), and U2(x,y,2) form an orthogonal
triplet of umit vectors. Thus, a surfel has
eight DOFs, three for the position, three for
orientation in space, and two from the k1 and
k2 values. When these values are available, the
surfels can be considered recognized.

The numerical computations are not straight
forward due to noise and discontinuities in
Z(x,y), which are not considered in differential
geometry. Filtering may be applied to reduce
noise, but the discontinuities should not be
“disturbed", since they represent edges and
corners. There are basically two approaches,
namely, local area fitting to obtain a local
analytic approximation [8,9], or direct computa-
tions [10]. Both methods have obvious drawbacks,
and the resultant "surfel features" are increa-
singly unreliable as a function of the amount
of processing and differencing.
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3) Classification: Classify the surfels by se-
lected surfel features to obtain "homogeneous'
regions (facets) in the xy-plane. However, in
the absence of prior knowledge, there 1s no uni-
que set or sequence of sets of surfel features
for classification. An hierarchy of classifica-
tions 1s suggested in [11] and a single step in
C12]. In any case, the "raw" facets found will
depend on the features or feature sequences cho-
sen. After classification, the "raw" facets can
be considered recognized according to their sur-
face characteristics.

4) Analytic "relaxation". If the maximum and
minimum curvatures k1 and k2 are chosen in (3),
the decision space H(k1,k2) segments the image
at most into second order facets. Consequently,
a second order analytic function 1is suitable for
approximating the "raw" facets. The function
z(x,y) = a + bx + cy + dx2Z + exy + iyZ was cho-
sen and the parameters found by L1 approximation
C13]. The fitting is iterated to find all the
surfels that can be considered to belong to a
given facet. Acceptable analytic facets are
found after two iterations, resulting in an
image Lf(x,y) of facet labels and a list F(..)
of analytic facet parameters.

5) Adjacency graphs: Given the labelled image
Lf(x,y), the images of kil(x,y), k2(x,y), etec.,
and the analytic parameters in F(..), it is a
simple matter to construct various adjacency
graphs indicating which facets meet and what
happens at facet contacts.

&) Edges and corners: The edges and corners in
the image are found at contacts between dif-
ferent labels in Lf(x,y). After some processing
the edges between the facets are labelled and
the analytic equation for each edge 1s obtaina-
ble, if desired. The corners are also labelled.
It should be noted that there are "true" edges
and corners, and also "other types" caused by
occlusion and analytic approximation of facets,
The nature of the edge can be detected given the
data so far, but this has not yet been confirmed
experimentally.

7) Primitive invariants: View- and occlusion-
independent variables that are now already
available or easily computable are planar facet
normal directions, surface curvatures, curvature
directions, normal vector differences at edges
and corners, relative sizes of facets 1f "fully
visible", ete.

8) Normal views: The edge-shape of a facet when
seen in the normal direction is easily obtained.
However, the facet may be partially occluded,
see (&),

%) Conceptual generalizations: The computations
up to this point are lengthy but straight for-
ward due to the uniqueness of Z(x,y). Two as-
pects should be noted, namely, occlusions which
are "natural", and the analytic approximation
which 1s "not natural'. Occlusions can split a
"natural facet" into several different facets

in Lf(x,y), each of which has its own individual
set of analytic parameters in F(..). Surfel
classification and analytic approximation splits
even a fully visible multiply curved "natural
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facet" into several facets, each of which has
its own set of parameters in F(..). This "not
natural” segmentation 1s caused by the analytic
approach. Numerous rules may be postulated for
assembling the facets in F(..) into larger and
possibly "more natural" facets, see Experimental
results.

10) Rough geometric and other models: The only
way to satisfy the premises in (1), 1in the au-
thor’s belief, is to have "first level" models
for object recognition which are constructed
from "primitives'" which can be extracted from
the scene without any prior knowledge of scene
content. As seen from the analysis above and
the experimental results, there are many such
“first level pramitives" (L1P’s). A knowledge
base constructed from L1P‘s need not "explode",
and models (KBM’s) which do not contain at least
some of the L1P’s cannot be candidates for fur-—
ther study. These aspects are under investiga-
tion.

EXPERIMENTAL RESULTS

Two range images called "Grapple" and
"Mask0O0O1" [14] were selected, see Figure 2. The
original size of the Z(x,y) images 1is 256 hy 256
suriels., The spatial resolution in x, y, and z
1s the same. The studies were carried out on
reduced 128 x 128 images by selecting every
second pixel on every other row.

Both images were processed for surfel fea-
tures (step 2 above), the pixels were classified
(3), the facets were analytically relaxed (4),
and some adjacency graphs were aobtained (5). The
resultant facets are shown in Figure 3 and a
portion of an adjacency graph is in Figure 4.
Due to the rather low spatial resolution, the
"probe" or the "center post' in Grapple may not
resolve properly. Most of the information about
the images is now available in "conventional
data structures", such as lists of analytic
parameters (F(..,)), adjacency lists, and raster
images where each pixel carries its facet label
(Lftx,y)). Edge detection (&) based on Lf(x,y)
is very simple and normal view creation (8) is
essentially a matter of coordinate transforma-
tion. The study was continued with conceptual
generalizations (9) based on some invariants or
"semi-invariants" (7).

(b)

ta)

Figure 2. Displays of the scenes for Grapple and
Mask001. (a) A CAD model rendering of the Grap-
ple. (b) A photo of Mask0OO1.
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Figure 3. (a) Decimated alphabetic print of
facet labelled image Lf(x,y) for Grapple from
analytic relaxation. The facet labels are num-
bered as 2, 3, 4y ..., and shown by letters
(O=,, 1=%, 2=C 3=D, ..., 25=I, 26=0, 27=A, ..)
For clarity, the boundaries between facets have
been outlined. (b) Edge enhanced analytically
reconstructed Z(x,y) based on Lf(x,y) and FF(..)
for MaskOO1.
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Figure 4: The top left corner of the adjacency

graph for Mask001 showing some facet contact

semi-invariants. The peripheral rows and columns
are facet labels and alphabetic labels. The
diagonal elements give the number of pixels per
facet. Below diagonal entries indicate the num—
ber of pixels making up the contact between the
two facets. Above diagonal entries give average
sums of 100%(1-pos(F1,F3)), 1.e., cosinus of

the difference between surface normals at con-
tact. Numerical values »1000 are set to 999.
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The Grapple image presents a rather simple
problem. Given any two flat facets Fi and Fj
(for which k1 and k2 are approximately zero),
the generalization consists of the following,
expressed as a "logical IF":

IF ( (facet Fi and Fj are flat) .AND. (Fi and Fj
are close, < D pixels apart) .AND. (F1 and F3
normals are parallel, within T degrees) .AND. (
(Abs(Z(Fi)-2(Fj)) at contact < Zd) ) THEN join
the facets.

The result (Licgix,y)) is shown in Figure
5. Note that the flat background has become one
facet, and the "face plate" has become another
flat facet, call it Fp. Three parameters have
been used, namely, a measure of "closeness"
(D), angular disparity between normals (T), and
how well the facets “fit together" (Id) at the
point where they would join if there were no
obscuring objects in the view.

The surface normal Nfp of Fp and its center
of gravity CGip can serve as a semi-ilnvariant
reference coordinate system (x‘y’z’). The "acms"
on the grapple consist of a "knuckle" and a con-
ical "bone" each. Unless the grapple 1is very
highly tilted away from the direction of view,
one or two "knuckles'" and at least two "bones"
remain visible and have been identified as "sph-
erical" (k1 and k2 are nonzero) and "cylindri-
cal" or "conical" (k1 not zero, kZ approximately
zero) regions. Accurate information is available
from the analytic approximation and "noisy in-
formation" may be obtained directly from the
K1(x,y) and k2(x,y) images masked by Lfcg(x,y).
The centers of gravity for all the facets are
available from image data but, of course, they
are somewhat dependent on the number of pixels
seen on each facet, hence the "semi-invariance".
A rotation angle for (x'y’z’) may be defined
with respect to the best visible "bone and knuc-
kle" combination. 0f course, Fp has to be recog-
nized (as a circular disk).
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Figure 5. Decimated alphabetic print of the
"conceptually generalized" facet labelled image
Licg(x,y? for Grapple.
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The "semi—-invariant" recognition features
in the grapple image with respect to CGip are,
among others, the spatial angles between any two
"knuckles', between any two "bones', between Nfp
and a "knuckle" and "bone" triplet, and that Nip
and adjacent "knuckle and bone' are approxima-
tely in the same plane. The vectors are defined
with respect to the CG's. Such relationships
constitute "rough geometric modelg" (step 100.

The Mask(0O01 1image represents a much more
interesting challenge and it also point out cer-
tain weaknesses in the method. A careful study
of the mask (Figure 2Zb) and the segmentation
(Figure 3b) reveals that the computer is "most
faithfully doing the best it can'. Even though
we can assign a meaning to most of the facets,
this is insufficient for machine recognition.
The facets have been forced to be of second
order, and a very meticulous second order seg-
mentation has been obtained, but there are too
many such facets. To reduce the number of fac-
ets, numerous "conceptual generalizations" are
possible, but to determine which facet combina-
tions are "meaningful" in human terms and which
are not, is both premature and creates the basic
paradox in image segmentation. Once a set of
facets have been joined, the resultant analytic
approximation should correspond to the complexi-
ty of the facet. The generalizations experi-
mented with are given below, where FO is the
“"absorbing' facet and Fk the facet "to be ab-
sorbed” by FO.

(a) Larger facets can absorb smaller facets (FO
> Fk)» if a combination of the following
conditions 1s satisfied:

The amount of contact between facets has to
be adequate (>Lc), for example, expressed
as P2Z/A, where P is the contact length bet-
ween FO and Fk, and A 15 the area of Fk,
see Figure 4.

The average analytically computed absolute
I-difference at contact between FO and Fk
should be less than Zd. This may be cor-
rected for surface normal view.

(b)

(el

(c) The average 1-cos(NfO,Nfk) at contact is
less than a limit Cd, see Figure 4.

(d) The signs of k1(FD) and ki(F1), and kZ(FO)
and k2(Fk) are the same.

(e) The average "flatness measure" Ik1l+IkZl at

contact 1s less than a limit Kf.

It can be shown that condition (e) is not
very reliable, leaving the parameters Lec, Zd,
Cd, and a choice for (d), to cluster the facets.
A few experimental results are in Figure 4.

With adequate "fine tuning"” of H(k1,k2) clas-
sification parameters and Lc, 2d, Cd, etc.,
rather interesting segmentations of MaskOO1 may
be produced, but this violates the premises (1)
that the scene is unknown and we are introducing
our own understanding of how the scene should
be segmented. The only critical requirement at
this stage is consistency in segmentation for
scenes of the same kind such that the knowledge
base can be addressed without creating a com-
binatorial explosion. This argues for an inter-
play (feedback) between, at least, the concep-
tual generalizations and the knowledge base,
but for the moment these are only conjectures.
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(d)

(e)

Figure &. Decimated alphabetic prints of the

"conceptually generalized" facet labelled image
Lfcg(x,y) for Mask0D01. (a) Le=10, Zd=25 since I-
differences are times 100, Cd=10, and condition

"d" is on. (b) Lc=10, Zd=50, Cd=10, and 'd"
off. (e) Le=0, Zd=300, Cd=50, and "d" on. (d)
Le=0, Zd=300, Cd=50, and "d'" off.

COMMENTS

The Mask0O01 image illustrates that in the

clustering of facets the combinpatorial explosion

can be avoided by predefined "rules". It 1s
usually expected that the resultant "generali-

zations" have to correspond to "humanly meaning-

ful" facets, but this expectation is premature.

The only requirement at this stage of proces-
sing, based on the facets found, 1is to locate
the most likely object model candidates in the

knowledge base. In human terms, the entire pro-

cessing described so far only constitutes "the
first glance" (of about 0.1 seconds) at the
scene!

CONCLUSIONS
A strategy has been described and demorn-

strated, indicating that the processing can be
carried out in the absence of prior knowledge

of the Z(x,y) scene. Invariant and semi-invari-

ant descriptors are obtained which can be used

to construct a knowledge base ("learn') as well

as to access the knowledge base for recognition.
However, only with a multicomputer configuration
or with special hardware 1s it feasible to carry

out the required computations fast enough to
make this approach practical and to advance

research on knowledge base structures for mach-

ine vision based on 3D range images.
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