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A method of analyzli-rg 30 range images 
Zix.y:I 1s described and ~llustrated. Prlor know- 
ledge of object models and scenP content is not 
used. The strategy uses a mlxture of analytlc 
and image processing techniques. A pixel or 
surf ace element ("surfel "1) in Z!x.y:) has eight 
degrees of freedom, of which Z, x, and y are 
given, and the remaining five are computed. The 
surfels are classified and the resultant facets 
are analytically "relaxed" and label led. giving 
an image of facet labels Lf !x,y:l. Lf (x,y:l 1s 
processed for edges and corners, and the facets 
are grouped (:"conceptual genera1lzations"j. 
Lists of facet surface parameters, edges and 
edge parameters, corners. facet edge shapes, 
and view-independent pr~.mitives are obtained. 
including various adjacency graphs. Ample infor- 
mation is made available for object learning, 
knowledge base construction, and object recog- 
nition. Considerable computing is required and 
the method can be practical only in a mlulti- 
computer environment or on special hardware. 

INTRODUCTION 

The detection of depth from pairs and se- 
quences of gray level lmages is a com~lex prob- 
lem. This complexity is very elegantly side- 
stepped by the 3U !laser) range finding scanner 
whlch provides distance readings directly, and 
also dellvers gray level data and. if desired, 
colour information Ell. There are several other 
ways of detecting the range from an observer to 
the surfels in a scene CZI. The range flnder is 
an "active" scanner, i.e., it provides its own 
light source (a laser:) to Illuminate the scene. 
Due to its "active" nature, such a scanner is 
not suitable when the observer wants to remain 
concealed, and it is dangerous to eyes. The 
light beam has to be scattered adequately by 
the nearest surfels in the scene to produce 
detectible return signals. Hence. the surfaces 
of transparent objects. reflective surfaces, 
and also "furry" surf aces create problems since 
the return signal may be absent or appear to 
"come" from the wrong "place". Where the range 
scanner can be used, it is a very useful devlce 
for computer vision. The analysis of range ima- 
ges is rather straight forward since range data 
are physlcally meaningful and unambiguous, name- 
ly. the distances from the camera to points on 
the surfaces of objects in the scene. 

Differential geometry may be considered to 
be the theoretical foundation for the analysis 
of range data C31. However. even though the 
required processing steps are theoretically 
well defined, there.is a difference between 
theory and practice. Theoretically, the range 
image is a function of the form G(u1,uZi of the 
two surface coordinates ul and uZ. The function 
G(u1 ,u2) is assumed to be "sufficiently dif- 
ferentiable" to suit the theory. In practice. 
the range image is a spatially quantized func- 
tion of the form Z(x,y!. Z(x,y) is a matrix of 
tabulated orthogonal distances Z from the plane 
of the camera to some surfel ix,y) in image 
coordinates. Z(:x,y) is neither noise free nor 
is it "sufficiently differentiable" since it 
contains discontinuities in Z values at unknown 
locations in the (x,yi plane. These we call the 
"edges" and "corners" of objects, while the 
"sufficiently differentiable" regions are the 
smooth facets In the scene. Only after conslde- 
rable processing can the smooth facets be ex- 
pressed as functions of the form Z = f !x, y :), 
from which point onwards differential geometry 
and analytic techniques become directly appllc- 
able. Uue to llmited space, it is impossible to 
describe and llst all the efforts and authors 
concerning range Images. Summaries may be found 
in, for example, C4.5,6,77. 

A STRATEGY 

The usual approaches to lmage analysis are 
chosen by need, convenience, and convention, 
since there is no well formulated theory. Furt- 
hermore, it is nearly always assumed that there 
are only a few objects in a scene and that the 
objects can be found by some model matching 
t,echnique, given enough constraints, Of course, 
since object recognition requires some prior 
"knowledge" of the object, the final stage of 
any recognition scheme consists of comparing 
the "knowledge" with the information extracted 
from the scene. However, a pure "top down" pro- 
cess results in a combinatorla1 explosion, and 
a pure "bottom up" procedure generates a profu- 
sion of "features" the combinations of which 
also "explode". The Z!x,y:J lmage is no excep- 
tion. However, the Z (x, y :I 111f ormation has on1 y 
one unique interpretation, namely. Z is the 
orthogonal distance from some reference ix.y:) 
plane to the nearest surfel In the scene. Z is 
independent of surface properties and colour. 
The author has approached this problem as fol-- 
lows, see Flgure 1: 
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(15 Z(x,y): Original image. 
I 

!2:) Surf el features. 
I 

(3) Pixel classification and 
preliminary segmentation. 

I 
( 4 )  Analytic relaxation. 

I 
( 5 )  Adjacency graphs. 

( 6 )  Edge and corner label image and 
analytic edge features. 

I 
(:7i Primitive invariants. 

I 
( 8 )  Facet shapes in normal view. 

I 
( 9 )  Conceptual generalizations. 

I 
(10, Rough geometric models. 

I 
Learning and recognition <--> KB 

Figure 1: A brief sketch of the processing stra- 
tegy. KB is the knowledge base. 

1) Premises: For generality, the scene content 
is assumed unknown and no constraints are placed 
on the number, size, position, orientation. 
shape, and overlap of the objects. The methods 
must not reqcrire prior knowledge of object mod- 
els. This dictates a "bottom up" or "data dri- 
ven" approach but the "explosion" of primitives 
is to be avoided. Adequate spatial resolution 
and the existence of smooth and opaque surfaces 
in the scene are assumed. 

2i Surfel features: Given the Z(x,y) image, com- 
pute the remaining five degrees of freedom (UOF) 
at each surfel. The basic parameters for a sur- 
fel are its position (x,y,Z) expressed as 
Z(,x,y:I, its unit surface normal vector Nix,y,Z), 
and the maximum surf ace curvature kl (x, y, Z:l and 
the minlmum surface curvature kZix,y,Z:). The 
surface curvatures kl and k2 are scalars with 
an arbitrarily defined sign. The maximum (kl:] 
and mlnimum (k2) are orthogonal, and directed 
as indicated by the corresponding unit vectors 
Ul(x,y,Zj and U2!x,y,Z). The vectors N!x,y,Z:l, 
Ul(x,y,Z>, and U2(x,y,Zi form an orthogonal 
triplet of unit vectors. Thus, a surfel has 
eight DOFs, three for the position, three for 
orientation in space, and two from the kl and 
kZ values. When these values are available, the 
surfels can be considered recognized. 

The numerical computations are not straight 
forward due to noise and discontinuities in 
Z(x,y), which are not considered in differential 
geometry. Filtering may be applied to reduce 
noise, but the discontinuities sho~~ld not be 
"disturbed", since they represent edges and 
corners. There are basically two approaches, 
namely, local area fitting to obtain a local 
analytic approximation C8,93, or direct computa- 
tions C103. Both methods have obvious drawbacks, 
and the resultant "surfel features" are increa- 
singly unreliable as a function of the amount 
of processing and differencing. 

3:) Classification: Classify the surfels by se- 
lected surfel features to obtain "homogeneous" 
regions (facets:] in the xy-plane. However, in 
the absence of prior knowledge, there is no uni- 
que set or sequence of sets of surfel features 
for classification. An hierarchy of classif lca- 
tions is suggested in C117 and a single step in 
C.121. In any case, the "raw" facets found will 
depend on the features or feature sequences cho- 
sen. After classification, the "raw" facets can 
be considered recognized according to their sur- 
face characteristics. 

4:) Analytic "relaxation". If the maximum and 
minimum curvatures k.1 and kZ are chosen in (31, 
the decision space H(kl,k2) segments the image 
at most into second order facets. Consequently, 
a second order analytic function is suitable for 
approximating the "raw" facets. The function 
z(x.y:~ = a + bx + cy + dx2 + exy + fy2 was cho- 
sen and the parameters found by L1 approximation 
L131. The fitting is iterated to find all the 
surfels that can be considered to belong to a 
given facet. Acceptable analytic facets are 
found after two ~terations, resulting in an 
image Lf(x,y) of facet labels and a list F( . . )  
of analytic facet parameters. 

5:) Adjacency graphs: Given the labelled image 
Lf(x,yi, the images of kl(x,yl, k2(x,yi, etc.. 
and the analytic parameters in F(..i, it is a 
slmple matter to construct various adjacency 
graphs indicating which facets meet and what 
happens at facet contacts. 

6 )  Edges and corners: The edges and corners in 
the image are found at contacts between dif- 
ferent labels in Lf(x,y). After some processing 
the edges between the facets are labelled and 
the analytic equation for each edge is obtaina- 
ble. if desired. The corners are also labelled. 
It should be noted that there are "true" edyes 
and corners, and also "other types" caused by 
occlusion and analytic approximation of facets. 
The nature of the edge can be detected given the 
data so far, but this has not yet been confirmed 
experimentally. 

7)  Primitive invariants: View- and occlusion- 
independent variables that are now already 
available or easily computable are planar facet 
normal directions, surface curvatures, curvature 
directions, normal vector differences at edges 
and corners, relative sizes of facets if "fully 
visible", etc. . 

8:) Normal views: The edge-shape of a facet when 
seen in the normal direction is easily obtained. 
However, the facet may be partially occluded, 
see (6). 

9) Conceptual generalizations: The computations 
up to thls point are lengthy but straight for- 
ward due to the uniqueness of Z(x,y:). Two as- 
pects should be noted, namely, occlusions which 
are "natural", and the analytic approximation 
which is "not natural". Occlusions can split a 
"natural facet" into several different facets 
in Lf(x,y), each of which has its own individual 
set of analytic parameters In F i . . ) .  Surfel , 

classification and analytic approximation splits 
even a fully visible multiply curved "natural 



IAPR Workshop on CV -Special Hardware 

facet" into several facets. each of which has 
its own set of parameters In F(..:). This "not 
natural" segmentation 1s caused by the analytlc 
approach. Numerous rules may be postulated for 
assembling the facets in F(..j into larger and 
possibly "more natural" facets, see Experimental 
results. 

101 Rough geometric and other models: The only 
way to satlsfy the premlses In (I), In the au- 
thor's bellef, 1s to have "flrst level" models 
for object recognltlon whlch are constructed 
from "prlmltlves" whlch can be extracted from 
the scene wlthout any prlor knowledge of scene 
content. As seen from the analysls above and 
the experimental results, there are many such 
"flrst level prlmltlves" tL1P's). A knowledge 
base constructed from LIP'S need not "explode", 
and models (KBM'sl whlch do not contaln at least 
some of the LlP's cannot be candidates for fur- 
ther study. These aspects are under ~nvestlga- 
t Lon. 

EXPERIMENTAL RESULTS 

Two range images called "Grapple" and 
"MaskOO.1" C.143 were selected, see Figure 2. The 
original size of the Z(x,yJ lmages is 256 by 256 
surfels. The spatial resolution In x, y, and z 
1s the same. The studles were carrled out on 
reduced 128 x 128 lmages by selecting every 
second pixel on every other row. 

Both images were processed for surfel fea- 
tures (step 2 above,, the pixels were classified 
(:3), the facets were analytically relaxed ( 4 ) ,  
and some adjacency graphs were obtained ( 5 ) .  The 
resultant facets are shown In Figure 3 and a 
portion of an adjacency graph is in Figure 4. 
Uue to the rather low spatlal resolution, the 
"probe" or the "center post" in Grapple may not 
resolve properly. Most of the lnf ormation about 
the lmages is now available in "conventional 
data structures", such as lists of analytic 
parameters (F(..!), adjacency lists, and raster 
images where each pixel carries its facet label 
(Lf(x,y,~. Edge detection ( 6 )  based on Lf(x,y) 
is very simple and normal view creation ( 8 )  is 
essentially a matter of coordinate transforma- 
tion. The study was continued with conceptual 
generalizations (91 based on some invariants or 
"semi-invariants" (7). 

Figure 2. Displays of the scenes for Grapple and 
Mask001. (a:) A CAD model rendering of the Grap- 
ple. (b) A photo of MaskOOl. 
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Figure 3. la1 Decrmated al~habetlc ~rlnt of 
facet labelled lmage Lfcx,y] for Grapple from 
analytlc relaxation. The facet labels are num- 
bered as 2, 3. 4, . . ., and shown b~ letters 
(0=., I=+, Z=C 3 = D .  .... 25=Z. 26=C, 27=A, ..I 
For clarlty, the boundaries between facets have 
been outlined. (bl Edge enhanced analytically 
reconstructed Z(x,yJ based on Lf(x,yJ and FFI..) 
for WaskOOl. 

Figure 4: The top left corner of the adjacency 
graph for Mask00.1 showing some facet contact 
semi-invariants. The peripheral rows and columns 
are facet labels and alphabetic labels. The 
diagonal elements give the number of pixels per 
facet. Below diagonal entries indlcate the num- 
ber of pixels making up the contact between the 
two facets. Above diagonal entries give average 
sums of 100%,(1-cos(Fi,Fj~:). i.e.. cosinus of 
the difference between surface normals at con- 
tact. Numerical values >1000 are set to 999. 
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The Grapple image presents a rather slmple 
problem. Given any two flat facets Fi and Fj 
(for which kl and kZ are approximately zero), 
the generalization consists of the following, 
expressed as a "logical IF": 

IF ( (facet Fi and Fj are flat) .AND. (Fi and Fj 
are close, i D pixels apart) .AND. !F1 and Fj 
normals are parallel, uithln T degrees, .AND. ( 

(Abs!Zi:Flj-Z(Fj:)j at contact < Zdj ) THEN join 
the facets. 

The result !Lfcg(x,y!) is shown in Figure 
5. Note that the flat background has become one 
facet, and the "face plate" has become another 
flat facet, call it Fp. Three parameters have 
been used, namely, a measure of "closeness" 
(D!, angular disparity between normals ( T ) ,  and 
how well the facets "fit together" !Zdj at the 
point where they would join rf there were no 
obscuring objects In the view. 

The surface normal Nfp of Fp and its center 
of gravity CGfp can serve as a semi-invariant 
reference coordinate system (x'y'z'j. The "arms" 
on the grapple consist of a "knuckle" and a con- 
ical "bone" each. Unless the grapple 1s very 
highly tilted away from the direction of vieu, 
one or two "knuckles" and at least two "bones" 
remain visible and have been identified as "sph- 
erical" (kl and k2 are nonzero:) and "cylindri- 
cal" or "conical" (kl not zero, k2 approximately 
zeroi regions. Accurate information is available 
from the analytic approximation and "noisy in- 
formation" may be obtained directly from the 
klix,y:) and k2(x,y) images masked by Lfcg(x,y). 
The centers of gravity for all the facets are 
available from image data but, of course, they 
are somewhat dependent on the number of pixels 
seen on each facet, hence the "semi-invariance". 
A rotation angle for (x'y'z'j may be deflned 
with respect to the best visible "bone and knuc- 
kle" combination. Of course, Fp has to be recog- 
nlzed (as a circular disk). 

Figure 5.  Decimated alphabetic print of the 
"conceptually generalized" facet labelled Image 
Lfcg(x,y) for Grapple. 

The "seml-lnvarlant" recoanltion features 
In the grapple lmage ulth respect to CGfp are, 
among others, the spatlal angles between any two 
"knuckles", between any two "bones", between Nfp 
and a "knuckle" and "bone" trlplet, and that Nfp 
and adjacent "knuckle and bone" are approxlma- 
tely In the same plane. The vectors are deflned 
wrth respect to the CG's. Such relat~onshlps 
constitute "rough geometric  model^" (step 101. 

The MaskOOl image represents a much more 
interesting challenge and ~t also point out cer- 
tain weaknesses in the method. A careful study 
of the mask (Figure 2b:) and the segmentation 
(Figure 3b1 reveals that the computer is "most 
faithfirlly doing the best it can". Even though 
we can assign a meaning to most of the facets, 
this is ~nsufficient for machine recognition. 
The facets have been forced to be of second 
order, and a very meticulous second order seg- 
mentation has been obtained, but there are too 
many such facets. To reduce the number of fac- 
ets. numerous "conceptual generalizations" are 
possible, but to determine which facet combina- 
tions are "meaningful" in human terms and which 
are not, is both premature and creates the basic 
paradox in image segmentation. Once a set of 
facets have been joined, the resultant analytic 
approxlmatlon should correspond to the complexi- 
t,y of the facet. The generalizations experi- 
mented with are given below, where FO is the 
"absorbing" facet and Fk the facet "to be ab- 
sorbed" by FO. 

iaj Larger facets can absorb smaller facets (FO 
:> Fk:] if a combination of the following 
conditions is satisfied: 

l'b) The amount of contact between facets has to 
be adequate 0Lc:I. for example, expressed 
as PZ/A, where P is the contact length bet- 
ween FO and Fk, and A is the area of Fk, 
see Figure 4. 

(c.j The average analytically computed absolute 
2-difference at contact between FO and Fk 
should be less than Zd. This may be cor- 
rected for surface normal vieu. 

(cj The average 1-cos(Nf0,Nfk) at contact is 
less than a limlt Cd, see Figure 4. 

(dj The signs of kl (FO) and kl (Fl). and kZ(FOj 
and k2(Fkj are the same. 

i:e) The average "flatness measure" lkll+lk21 at 
contact is less than a limit Kf. 

It can be shown that condition (e) is not 
very reliable, leaving the parameters LC, Zd, 
Cd, and a cholce for (dl, to cluster the facets. 
A few experimental results are in Figure 6. 
With adequate "fine tuning" of H(k1,kZ) clas- 
siflcation parameters and LC, Zd, Cd, etc., 
rather interesting segmentations of MaskOOl may 
be produced, but this violates the premlses (1.1 
that the scene 1s unknown and we are introducing 
our own understanding of how the scene should 
be segmented. The only crltical requirement at 
this stage is consistency in segmentation for 
scenes of the same kind such that the knowledge 
base can be addressed without creating a com- 
binatorial explosion. This argues for an inter- 
play (feedback) between, at least, the concep- 
t,ual generalizations and the knowledge base, 
but for the moment these are only conjectures. 
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Figure 6. Decimated alphabetic prints of the 
"conceptually generalized" facet labelled lmaqe 
Lfcgix,yj for Mask001. (a) Lc=.lO. Zd=Z5 slnce Z- 
differences are times 100, Cd-10, and condition 
"d" is on. 1.b) Lc=,lO, Zd=50, Cd=.lO, and "d" 
off. ic) Lc=O, Zd=300, Cd=50, and "d" on. id, 
Lc=O, Zd=300, Cd=50, and "d" off. 

COMMENTS 

The Mask001 lmage illustrates that in the 
clustering of facets the combinatorial explosion 
can be avoided by predefined "rules". It is 
usually expected that the resultant "generali- 
zations" have to correspond to "hctmanly meaning- 
ful" facets, but this expectation is premature. 
The only requirement at this stage of proces- 
sing, based on the facets found, is to locate 
the most likely object model candidates In the 
knowledge base. In human terms. the entire pro- 
cessing described so far only constitutes "the 
first glance" (of about O:1 seconds) at the 
scene ! 

CONCLUSIONS 

A strategy has been described and demon- 
strated, indicating that the processing can be 
carried out in the absence of prior knowledge 
of the Z(x,y:J scene. Invariant and semi-invari- 
ant descriptors are obtained which can be used 
to construct a knowledge base ("learn") as well 
as to access the knowledge base for recognition. 
However, only with a multicomputer configuratron 
or with special hardware is it feasible to carry 
out the required computations fast enough to 
make this approach practical and to advance 
research on knowledge base structures for mach- 
ine vlsion based on 3U range images. 
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