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I.  Introduction

The essence of the 3-D object
recognition technique is to derive an object
representation from the sensor data and to
match it with the stored models. There are
different strateqgies, available in the
literature, for object representation scheme
and the matching technique. An object is
represented by a set of primitives, such as
points and lines [1], surfaces [2,3], voxels
(4,51 etc. For wireframe representation an

object 1s represented by a list of vertices
and edges. Usually an object is recognised,
in this case, by matching relational
structures.

For 3-D object recognition, different

matching strategies can be broadly categorised
as (i) Graph matching strateqgy, (11)
Transformation of images into a feature space
and thus match with the model feature vectors,
% (iii) Knowledge based recognition strategy.
Though syntactic technique is widely used for
2-D object recognition, its application to 3-D
object recognition is limited due to its
increasing complexity in handling 3-D object
shapes.

In this paper we present a model-based
recognition scheme for 3-D objects using fuzzy
pattern matching technigues. The input to our
vision system is given in the form of a 3-D
binary array obtained from the range data of
the 3-D object. Through a series of
preprocessing, we convert this input into an
equivalent 3-D wire-frame description, called
the 3-D graph [E1. In this araph, the
vertices represent the actual corners of the
object and the edges are formed by connecting
those vertices where a corresponding edge is
present in the object itself. Since the
problem is to identify a given object as one
of the known object-models, we maintain an
image library for the 3-D graphs of the known
models. Hence the problem of recognition is
reduced to fuzzy graph matching. These model
graphs are characterised by feature vectors.
Similarly, the derived 3-D graph can be
characterised by a feature vector with a
degree of fuzziness. And thus the matching
can be done with a controllable degree of
uncertainty. This scheme reduces the graph
matching problem into a feature matching
problem. Being a mathematical scheme it

offers considerable computational advantages

aver the usual relational schemes.

I1. Representation of the objects in the world
model :

Objects can be modelled 1n its wire frame
structure with proper node characterizations.
The six different node categories for this
purpose are:

(i) C-Corner: o(zgo"

77l £180
F‘},, 'L 4180
7,
(1i1) V-Corner: 0"(.,( (&(350‘
omd. a
& goo’ 180
(iv) Y-Corner: P Any tuwo of %,6,)

e are 5 90°

(i1) L-Carner:

(v) X-Corner:

(vi) I-Corner

Ve R |
¥ =180° $=180°

Now we can characterise the object models by
features formed by counting the number of
corner or edge categories. We show an  example
of a 3-D 'B" in Fig. 1. Figure 1(a) shows the
object, 1(b) shows the preprocessed 3-D araph
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and 1) its final form of wireframe
structure. From 1(c) we have
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IIl1. Fuzzy recognition scheme of an unknown
ob ject:

For an unknown object, we get its 3-D
graph as G(V,E), where, V is the set of
vertices and E 1is the set of edges and
V(i)EV, (x4, Y1, 2.) €1 % 1 % L.

Using the wire-frame structure, we compute the
fuzzy membership A(v(i), j) of its vertices
v(i),1<=1<= n, to the corner type j, J = L,
C, V, X, Y. This computation is based on the
2-D angle subtended by every pair of its edges
meeting at v(i), where separate membership
functions are used for acute, obtuse, right
and straight angles. The method will be
described later.

Then a working hypothesis @ is defined
for the unknown object as,
8= {vi),m(1)), (v(2),m(2))y0uu, Cvin),mlnd) 3,
mCi)ed{l, C, V, X, ¥ i =1, 2y...y n.

The fuzzy membership AB) of @ to the set

of all possible hypotheses S is defined in
terms of the Ad(v(i), j)'s as
n
AL = min{ AC(v(i),m(i))}
i=1

Clearly there are 5~ different hypotheses for
the object of which we are trying to select
the "best" one. Taking a model O from the
object-library we next compurte the similarity
between the object-hypothesis @ and model O
with respect to the feature vectors FV(Q) and
FV(O) or feature matrices FM(Q) and FM(D).
This similarity function will be denoted by
AL(@,0), mathematically it can be defined in
various ways.

Two of such definitions which have been

used according to the reqguirement are as
follows:
(1¥e,0 =1 -

min(@n(i),0ni))

2
}..(l)

min(@n(i),0nci)) }"

max (Bn(i),0n(id)

max (Bn(i),0n(i))

It
definitions are a normalised metric compatible

can be verified that the  above

to the membership A(Q). Though it is defined
for five (or fifteen) features, it can be
immediately extended to more number of

features for better reliability at the cost of
extra computation.

Finally, the membership of the unknown
model G to the selected model O is given by
=max  {min(A(0) 4 (B,0)))

ALG, D)
- QES

Since the size of S is exponential the

computation of (G,0) is highly expensive.

However, using a high threshold on the

ALlv(i),m(i))'s in the determination ofAL(Q),

we have been able to restrict the number of
viable hypotheses to a reasonable limit
without any noticeable degradation in the
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per formance of the system. Once the
AL(R,0)"s have been found we declare a set of
close matches with G from our library

accroding to high similarity values.

IV. Fuzzy Labelling of the corners:

From the preceeding section, it becomes

clear that assignhing a membership value of a
corner to a particular type i.€., the
computation of AL(v(i), j) is the prime factor

for the computation of the membership of an
unknown object to a model (i.e., L(G,0)).
This membership value AL(v(i), j) depends upon

the nature of the angle subtended by every
pair of edges at that corner. We take four
types of angles according to our requirement
i.e., acute, right, obtuse and straight. We
can have the following observations (in Table
1).
Table - 1
Carner Fig. No. of Angular
Type children requirement
L 2 (1) right = 1%
or acute = 1
or obtuse = |
(ii)straight = 0
3] l ::::‘ »=3 (1) right »>= 3
v \\L// »=3 (1) right = 2
(i1) oblique = 1
or acute = 1
(1ii)straight= 0
X X =4 (i) straight = 2
Y >=3 (i) oblique = 3
or (oblique = 2
and (lacute = 1)
F o or (right = 1)))
—_
I 1 (=3 (i) straight = 1
1) no. of right-angle = 1.

fhere (right =

Hence the computation of membership value of
a corner to be labelled with a particular
corner type depends upon the computation of
the membership value of the subtended angles
at that corner to its type of angles. The
membership function for an angle 8 is defined
from angular thresholds in terms of the cosine
measure. For acute angle:
(cos B - cos(15))
UaB) =1 + y 0<= 8 <=15
(cos(15) - cos(0))

=1 , 15¢= 0 <=75
(cos B - cos(79))

=1+ y 79<{= B <=85
(cos(75) - cos(B5))

= 0, otherwise.

The membership functions for right angle (&),
obtuse angle (M..) & straight angle (U..) are
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defined analogously.

At any corner for each subtended angle
(@), the membership values corresponding to
acute, right, obtuse and straight angles are
computed. Then from the observations in Table
1, we can define the membership functions of
any corner to a particular type as follow,

Let 8(y, j=1,2,.., m be the subtended
angle at any corner.

Let us define certain terms and notation
as follows:

Angle = {a, r, ot, st }

m 2
Max(1,1) = max 4 (8¢j))?
5]
and any one of the B(k)'s for which 4 (B(j)) is
maximum is  removed to prevent its
reconsideration for further calculation i.e.,
Ay (B(k) =0, 4 1€Angle.

Max(0,1) = max {4y (B(j))}
¥ej
Mnmia,b) minimum of a & b

Mxm(a,b) = maximum of a % b.

MxmCa,b,c,d,...) % Mam(a,b,c,d,...) are
defined analogously.
d.f. = degree of freedom of the corner.

()

Hence membership function of any corner to be
assigned to C is:

C_mem = mnmimax(l,r),max(1,r),max(l,r)),
if d.f.>=3
=0 , otherwise.
Other membership functions are
similarly.

Here corner type I denotes a fake corner
% we have to exclude it during feature vector
formation. The effect of exclusion of I in
the computing feature matrix for a particular
hypothesis, is rather complicated. We have to
look for possible edges to be formed by
deleting the corner labelled to I (an example
shown in Fig. 2.).

If the sumtotal of all other corners are
sufficiently more than I-type corners, this
effect becomes less and the recognition system
can tolerate its mere exclusion without
read justing the labelled edges & thus
recomputing the feature matrix.

We will generate only those hypotheses
0, for which AL(v(i), j) >=d, such that

A(Q))“-‘th.

Here My, is taken as 0.5.

V. In choosing the similarity function:

The similarity function must be so chosen
that it can be compatible with A(R) and also
it should give the true picture of the
similarity between the temporarily unknown
ab ject representation (the hypotheses Q) and
the objects in the world model (0).

For this we have defined two new
normalised metric functions, as given in eqn.

defined

(1) & egn. (2). While defining these metric
functions we have to consider the relative
aoccurrences of the corresponding components of
the feature vectors and hence the absolute
difference, between them cannot reflect their
true similarity. That is why commonly used
normalized Euclidean distance measure cannot
be used in this regard. On the otherhand the
applicability of the second measure is more
appropriate in the edge-type feature model and
the first measure to a vertex-type feature
model . The reason behind it is that as the
number of features increases, the non
existance of any feature become common to
both the feature vector and the similarity
measure as defined by egn(1l) will always tend
to higher wvalues, But the second measure
takes care of this.

Again, we may note that the non_existance
of any feature vector, always contributes
'1', which tends to higher membership values .
Hence, before comparing between two feature
vectors, both  the feature vectors are
translated by an unit vector i.e., for each
component  xy.

Xgs = Xa + 13

V1. Results and discussions

In our vision system we have taken  3-D
binary array of an object as our input to the
vision system. These objects are transformed
into a wire-frame structure and then matched
with the stored object models. The similar
preprocessing technigue can also be
implemented for range images. But for a range
image the modelling requires the estimation
of representative feature vectors from
multiple viewing directions & storing them as
a set of representative feature wvectors &
choosing the best match for the  unknown
ob ject.

Here the results for the recognition of
the objects represented on the form of 3-D
binary array are shown in Table 2 and Table 3.

Table 2
B.V* S.V cube.V anvil.V
B 0,8002 0,5171 0,4753 0,3181
S 0.5603 0.7686 0.3968 0.4630
anvil 0.4073 0.4630 0.4205 1.0000
arrow  0.3BEE 0.4105 0.2650 0.6910
Table 3
B.M* S.M cube.M anvil.M
B 0.7388 0.4472 0.4300 0.4124
8 0.5000 0.6785 0.4385 0.4472
anvil  0.4472 0.5286 0.4385 1.0000
arrow  0,3997 0.5578 0.3895 0.5774
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¥ _.V denotes model feature vector and _.M
denotes model feature matrix.

Table 2 demonstrates the object matching
using vertex type feature vector and the
similarity measure defined in egn. (1), while

Table 3 demonstrates the object matching using

edge-type feature matrix and the similarity
measure defined 1in egqn (2). The relative
comparisons from the tables show that with
some threshold one can take decision for
matching the object. As for best matching
strategy, according to Table 2 and Table 3, B
is best matched to B, S to S, anvil to anvil
and arrow to anvil. For the best case anvil
can be said partially matched to arrow
(because they have very similar tail
structures). This shows that our recognition
strategy can be applied for occluded shape

matching also, by selecting the suitable part
of an image, which is the 'best' match for an
object model and acknowledging its presence in
the scene.

(CS)
(b) (c)
Fig.i
I
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I Fig.2
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