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Abstract 

This paper describes how range images can be seg- 
mented using the sign of differential geometry opera- 
tors such as the mean and Gaussian curvatures. This 
segmentation called topographic primal sketch is in- 
variant to rigid body motion in space and is defined 
by eight fundamental surfaces. The first part of the 
paper presents two novel techniques where an initial 
estimate of the categories, full of inconsistent labelling 
due to noise, is transformed into a consistent one. One 
of the two methods is based on a label relaxation tech- 
nique, where consistency is viewed as a local optimiza- 
tion problem, and the second is based on stochastic 
relaxation, where the local classification of a pixel is 
solved by statistical decisions. The advantages and dis- 
advantages of each method are presented. 

Introduction 

The basis of the topographic primal sketch consists 
of segmenting range images into surface patches ac- 
cording to categories defined by differential geometry 
operators such as the Gaussian (K) and mean curva- 
tures (H) (see [Haralick 831, [Besl 86a] and [Besl 86bl). 
From the sign of these invariant functions of directional 
derivatives, one can generate categories such as peak, 
pit, ridge, ravine, saddle, flat and hillside (see Table 1). 
From this initial classification, these categories can be 
grouped to obtain a rich, hierarchical, and structurally 
complete representation of the fundamental range im- 
age structure. This paper presents two novel tech- 
niques where an initial estimate of the categories full of 
inconsistent labelling due to noise is transformed into 
a consistent one. The first technique is based on a la- 
bel relaxation algorithm where consistency is defined 
by geometrical considerations such as curvature conti- 
nuity. The technique optimizes the global consistency 
by successively maximizing the local consistency in an 
immediate neighborhood. The second technique uses 
stochastic relaxation where the probability for a label 
is maximized using an optimization procedure. This 

paper describes the advantages and disadvantages of 
each method and also compares the quality of the seg- 
mentation produced. 

Using relaxation labelling we will demonstrate on 
real range images produced by the National Research 
Council of Canada (NRCC) range finder [Rioux 841 
that a stable estimation of a topographic primal sketch 
is possible. 

K 

Table 1. : Table of surface shapes and labels from 
Gaussian (K) and mean (H) curvature signs. 

Numerical Estimation of K and H 

- 
1 

Saddle 
Ridge 

2 

Minimal 
Surface 

3 

Saddle 
Ualley 

A range image is a graph Z(x,y) of three-dimensional 
measurements a t  a fixed view point of a scene. In or- 
der to evaluate the Gaussian K(x,y) and mean H(x,y) 
at  every point (x,y) one must compute the following 

0 
4 

Ridge 

5 

Flat 

6 

Valley 

H 

- 

0 

+ 

equations: 

K =  (ZZ.Z"" - Z2") 
(1 4- z: + 2;)' 

+ 
7 

Peak 

8 

(none) 

9 

Pit 
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One technique to compute these functions is to eval- we can evaluate the distribution of the noise for K=O 

uate each derivative by a local quadric model expressed and H=O. Using this distribution we can compute an 

by: optimal threshold based on a maximum likelihood sep- 
aration between two classes. The threshold calculated 

Z(zo, yo) = @ + al(z - 20) + a z ( ~  - YO) + as(= - zo)' by this technique can then be used for the classifica- 

+ad(= - zo)(y - yo) + as(y - yo)2 (3) tion of surfaces in a scene acquired by a laser scanner 
in the same configuration. One can see in Figure 1 a 

where the first and second order derivatives are pro- two-dimensional histogram of the K and H for a flat 
portional to the coefficients al, az, as, a4 and as, that surface. 
is: 

In order to fit this local surface model to the ac- 
tual range data one must use a mean-square technique 
that minimizes a Lz norm inside a window centered 
at  (zo, yo). This minimization process is similar to the 
solution of an over-determined system expressed by : 

where A=(@, al ,  ...., as) are the coefficients, 
Z=(Z11, Zlz, ...., Zmm) are the Z values inside the win- 
dow and C is the coordinate matrix. 

The window size is critical for a good estimation of 
the curvatures. A larger window size produces a bet- 
ter signal-to-noise ratio for the estimation of K and H 

Figure 1: Bi-dimensional histogram of K and R. Hori- 
zontal axis is K and vertical axis is H. 

Label Relaxation of the Topographic Primal 
Sketch 

After the initial estimation of the topographic pri- 
mal sketch a label relaxation process is applied to im- 
prove its consistency. Typically, noise in the range im- 
age produces labels that may be inconsistent with the 
region surrounding them. 

because we are computing an average in a larger neigh- 
Basically, relaxation labelling is an iterative proce- 

borhood, but a larger window size will also reduce the 
dure applied over a network of nodes. Associated with 

locality of the K and H measurements resulting in a loss 
each node is a set of labels ( in our problem numbers 

of small sized structures and produce erroneous estima- between and (g)), and ,ociated with label 
tion of the curvatures near discontinuities. A window 

is a of confidence or certainty. The degree 
size of was used in of Our of compatibility between a label and its neighborhood 

Production of the Topographic Primal 
Sketch 

The topographic primal sketch is produced from the 
initial evaluation of the Gaussian and mean curvatures. 
It corresponds to a label image where each type of sur- 
face is coded between 1 and 9. One of the problems 
related to the production of this label map is the eval- 
uation of two threshold values €6, Q, corresponding to 
the zero values of K and H. These values are very crit- 
ical because they correspond to an unstable region of 
the possible values of K and H. A technique for evalu- 
ating these thresholds is to measuie with a 3D sensor 
a scene of a flat surface and then evaluate the K and 
H values with the same operator used to analyse the 
scene. After the evaluation of K and H for this sur- 
face, we produce a two-dimensional histogram where 

can be measured by what is known as the label's s u p  
port. Relaxation labelling is the process of achieving 
ambiguity reduction by iteratively optimizing the local 
consistency. In the next sections we will described two 
new techniques to perform this operation. 

Non Statistical Relaxation Labelling 

First introduced by Rosenfeld et al. [1976], this 
relaxation labelling technique define compatibility be- 
tween labels as a set of rules corresponding to assump 
tion about the behavior of the world. Using his nota- 
tion the degree of compatibility between a label and 
its neighborhood can be measured by what is known 
as the label's support function: 
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which is a function of other label certainties p(X1) in the 
neighborhood and their compatibility Rj(X, A') (pair- 
wise) with the label being supported. The constraints 
between labels are represented by a matrix of com- 
patibilities fij(X, A') which corresponds, for the topo- 
graphic primal sketch, to a continuity criterion on the 
curvature signs of K and H. In this notation Rj(X, A') 
denotes the compatibility between label A' associated 
to node j and label X associated to node i. 

Definition of t h e  Consistency Mat r ix  Rj(X, A') 
a n d  Label Suppor t  Function pi( A) 

We will define consistency in our problem as a con- 
tinuous variation of the sign of K and H, that is, K or 
H must first pass zero when they vary from (-) to (+) 
or from (+) to (-). One can see in Table 2 the values of 
the consistency matrix from one label to another. The 
maximum consistency corresponds to similar pairs of 
labels and is reduced to half for labels corresponding 
to transitions between (+) or (-) to zero. Transitions 
between (-) to (+) or (+) to (-) are considered to be 
totally inconsistent. 

The label support is defined as follow 

where p,,(X) and p,, (A) correspond to a normalized 
distance from the threshold values ck and ch. They are 
expressed by the following equations: 

where n is equal to k or h and at,, at, correspond to 
the degree of confidence on the thresholds. The value 
of these functions n 1 for K=O and/or H=O and zero 
for K = ck and/or H = ch. 

Table 2. : Consistency matrix I?,j(X, A'). 

The p,(X) function corresponds to the degree of 
confidence on the evaluation of the curvature values. 
The function is based on the error estimate of the 1o- 
cal quadric model used to evaluate the curvatures. If 
the local quadric model is a good fit then the confi- 
dence level is high (max. 1) if not the confidence level 
is reduced in accordance with the following equation: 

where 
P' = C (f (z, Y) - z(z, Y))' 

window 
(13) 

which corresponds to the mean square error inside the 
evaluation window. Experimental results show that 
a, 1.4 c, is a good approximation of this parameter. 

The last label support functions pk(X) and ph(X) 
compute the degree of similarity of the curvature values 
inside an immediate neighborhood (typically a 5 by 5 
window). They are expressed by 

where 

an = C (n - R)' 
window 

(15) 

which corresponds to the standard deviation inside the 
window. 

Label Relaxation Process 

Our relaxation process is similar to the one devel- 
oped by Hummel and Zucker 119831 where the con- 
sistency optimization problem is defined in variational 
terms. 

In our problem a window of size 3 x 3 centered 
at each node i, j is analysed so that the consistency 
functional expressed by 

is optimized. That is, in a neighborhood of 3 x 3 find 
the best label at the center of this window that opti- 
mize the label support. 

The relaxation process is (a) to increase the label 
support if other unit labels that have high weighted 
labels are compatible with X at  the center of the win- 
dow and (b) decrease the label supports if other highly 
weighted labels are incompatible with A. At each iter- 
ation the label support is updated by: 

A vectorized version of this algorithm was imple- 
mented on an array processor. One can vectorize the 
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problem by computing in one operation all the label 
support for an incremental sequence of labels and in 
another operation compute the sum of the label sup- 
port for each one of them. Finally, a third operation 
searches the label with the maximum support. 

One can see in Figure 2a the initial estimate of the 
topographic primal sketch of a range image composed 
of a sphere, a cylinder and polyhedrons. Figure 2b, 2c, 
and 2d illustrate the evolution of the primal sketch as 
a function of the relaxation labelling process. 

Figure 2: I < ( ~ l i t x i ~ t , i ~ ~ ~  of t . l i ( x  I ) r i n ~ i t l  s k ( ~ t . c I ~  YS num- 

ber of iterations (non statistical method). (a) lower left 
(0) iteration, (b) lower right (1) iteration, (c) upper left 
(5) iterations, (d) upper right (10) iterations. 

Typically, convergence is obtained after four or five 
iterations. On a 7 Mflops array processor the compu- 
tation speed is 10 sec per iteration. An increase of the 
convergence rate is possible if we would use a larger 
window for the label optimization, but the consistency 
matrix would be more complicated since we are not 
optimizing with immediate neighbors. 

Statistical Relaxation Labeling 

In this section we will describe a new relaxation 
labelling method based on a generalized version of the 
algorithm described by Therrien et al. [1986]. 

This algorithm uses a two dimensional stochastic 
linear model to improve the local consistency of the 
primal sketch. In this algorithm, local consistency is 
achieved by maximizing the support for a label using 
a simple majority rule. Unlike the previous algorithm, 
where the update equation for the label support is lin- 
ear, this algorithm use a non linear statistical decision 
making process . The process is also sequential, mean- 
ing that the decision of the classification of a pixel is 
affected by decisions on the previous one. 
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Stochastic Relaxation Process 

Let E be a set of labels and F be the set of all 
possible pairs of labels defined as: 

Given a pair of labels (A,, A,), one can define the 
support for a label as a conditional probability prob- 
lem. 

Let 

be the probability that the central pixel has label A, 
as a function of its neighborhood V and 

be the probability that the central pixel has label A,. 

In these equations C,,, represents the support be- 
tween the central pixel A and its neighbor. For exam- 
ple, if the two possible labellings of the central pixel are 
A,, A,, then we can compute the support for one par- 
ticular interpretation as follow: C,,, = 1 if the neigh- 
boring label A' = A,, C.,, = -1 if A' = A, and C.,, = 0 
if A' # A, and A' # A,. 

After the computation of the support functions 
p(A,IV) and p(A,IV) we can give credit to the hypoth- 
esis that the central pixel is A, if P(A,IV) > P(A,IV). 

After the comparison pair-wise of all the possible 
labelling we then compute the following credit function 
T(Aj): 

Number of Credits Given to Label i 
T(Aj) = 

Cardinal of the set F (22) 

We then assign to the central pixel the label corre- 
sponding to the one with the maximum credit function. 

The algorithm computes for one iteration all the 
most probable labels and then uses this result recur- 
sively until no labels are changed. 

One can see in Figure 3 the evolution of the label 
map as a function of the number of iterations. One 
of the most interesting properties of the algorithm is 
the fast convergence rate compared to the non statis- 
tical algorithm (About two times the speed). For this 
technique the choice of the appropriate window size is 
crucial for the preservation of small regions. The best 
choice in our experimental results is 3 x 3 for the win- 
dow size and a = /3 = 7 = 1 for the label support 
functions parameters. 
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Conclusion 

We have demonstrated that the label relaxation 
process can improve significantly the quality of the to- 
pographic primal sketch. The simple rule of curvature 
sign continuity has produced good results but improve- 
ments such as a larger window size and some rules on 
long range curvature consistency may increase the con- 
vergence rate and the quality of the sketch. 

We have also demonstrated that stochastic relax- 
ation using majority rules can also produce good re- 
sults. One of the significant advantages of this method 
is its fast convergence rate over the non-statistical one. 
But, since this algorithm is serial, it would be impos- 
sible to improve its speed on future parallel machines. 

These algorithms, based on different philosophies 
of computing the label consistency problem produced 
similar results. But the non-statistical one has rules 
such as curvature continuity criterion and label sup- 
port function based on the actual values of the curva- 
tures which make it less sensitive to noise and more 
importantly less sensitive to the initial labelling of the 
primal sketch. 

Further study of both algorithms is necessary to 
determine which one is the most efficient to produce a 
good consistent topographic primal sketch. 
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