
IAPR Workshop Ofl CV - Spedal Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

AN INTERMEDIATE LEVEL VISION SYSTEM FOR
POPULATED PRINTED CIRCUIT BOARD INSPECTION

Ian Wallace
Department of Information Systems

Kingston Polytechnic

Penrhyn Road, Kingston upon Thames
Surrey. England

ABSTRACT

This paper outlines work on the
development of a system for producing
descriptions of fully populated
Printed Circuit Boards, and describes
the hardware and software components
which supports the first level of
this system. Inspection is defined as
a two stage process, description
followed by interpretation.
Description avoids the use of domain
specific information and models. The
system is used to test out two
hypothesis regarding delaying the use
of o b j e c t m o d e l s u n t i l the
interpretation phase.

INTRODUCTION

Existing industrial inspection
systems tend to use unsophisticated
image processing techniques and
dedicated hardware. Despite this
however they are increasingly
important in industry, and ensure
that there will be a market for the
'second generation' inspection
systems using A1 techniques and
specialised architectures. As
flexible manufacturing and CIM
systems mature there will be a need
for more powerful, intelligent, and
flexible inspection systems.

The Advanced Cim Inspection Device
(ACID) is a three stage intermediate
level vision, designed to test the
model free hypothesis. The industrial
inspection problem is reformulated as
a two stage process, production of a
general description, followed by
domain dependent interpretation. An
examination of existing image
understanding systems leads to the
conclusion that object models are
being used too early in processing,
resulting in systems which are overly
complex. The strong form of the model
free hypothesis states that a general
scene description can be produced
without recourse to domain s~ecif ic

object models, using general
mechanisms based on recently
discovered physiological mechanisms

[1 I . A week form of the hypothesis
allows that it may be necessary to
use domain specific features, but not
object models. Domain specific
features are those which might be
extracted from any image, but which
would only be expected to yield
useful information for particular
image classes.

ACID - SYSTEM DESIGN
ACID'S first stage, LAPSYS, is based
around a Linear Array Processor (LAP)
developed at the National Physical
Laboratory (NPL) Teddington England.
This system is responsible for low
level image processing operations,
achieved through algorithms written
in Picture Processing Language (PPL).
The Second stage, SUNSYS, is based
around a Sun 3 workstation. A suite
of program modules were developed to
implement a simple fourth generation
language for intermediate level image
processing. This language enabled
rapid prototying of different
approaches to the conversion of
iconic image data to a semi symbolic
form. The output from the second
stage is a set of Prolog statements,
describing the PCB in terms of lines,
edges, pins, and writing. The third
and final stage, called PROSYS, is a
production rule based system. The
Prolog statements produced by SUNSYS
are woven into a semantic net, where
t h e y are manipulated by the
production rules. At any time during
processing the semantic net will
contain the current state of the
description. When no more rules are
applicable the description is output
as text or graphics. The ACID system
is not concerned with the subsequent
interpretation of this description,
it does not take processing further
than the intermediate level. It is
envisaged that a domain specific
interpreter will be developed to bolt
on to the top of ACID. Different
interpreters would enable the system
to operate in different domains, each

IAPR Workshop on CV - Spedal Hardware and Jndustrial Applications OCT.12-14, 1988, Tokyo

one drawing on relevant domain
specific information and models.

LAPSYS

Recently it has been noted that the
efficiency of bi-dimensional array
processors is not as high as might be
hoped. Two problems exist. When the
image size is greater than the
processor array size, there are
considerable overheads involved in
allocating processors to pixels.
There is also a general overhead
involved due to the communications
between processors. This overhead can
be greatly reduced by adopting a one
dimensional linear processor
configuration in preference to the
t r a d i t i o n a l b i - d i m e n s i o n a l
con£ iguration. A linear architecture
offers a number of advantages :

Cost is lower - £5000 for a 256
element LAP

Lower communications overheads-
better utilization of processors

Easier to allocate processors to
pixels. A line of pixels can be
processed as a number of sections
if there are insufficient
processors available.

LAPSYS consists of three major
hardware components

PDP 11/23 mini computer
LAP array processor
Framestore & video 1/0

The LAP was developed at the National
Physical Laboratory, Teddington
Middlesex, during 1982 by Dr Peirs
Plummer. It had been realised that a
major obstacle to the widespread
practical application of image
processing in the fields of
industrial inspection and robotics
was the lack of any hardware fast
enough to perform real t i m e
processing and which was inexpensive
(less than five thousand pounds) and
flexible.
The LAP is able to perform complex
image-processing operations on both
grey-scale and binary images. It is
particularly suited to processing the
output from a linear photo diode
array camera scanning a conveyor belt
in applications such as automated
visual inspection. F o r s u c h
applications it is claimed to be
about two orders of magnitude faster
than a conventional microprocessor.

The LAP is able to process about 128
mi 1 lion instructions per second
(mips) and consists of a linear array
of processing elements, one for each

pixel across the width of the image.
E a c h column contains a fast
single-bit Boolean processing
element, 16 single bit working
registers, and 256 bits of random
access memory (Figure 1) . In addition
each column has 8/16 bit input/output
r e g i s t e r . E v e r y c o l u m n h a s
interconnections to its two adjacent
columns and thus information can be
transferred horizontally between
columns as well as vertically within
a column. The LAP can be built up of
blocks of 64 such columns to give
between 256 and 2048 elements. In use
all columns operate in parallel under
the control of a master control unit.
This executes microcode instructions
defining the required operations,
which are held in a program memory
w i t h a c a p a c i t y o f 1 6 , 3 8 4
instructions, each 24 bits long. The
controller sends one instruction at a
t i m e t o e a c h p r o c e s s o r
simultaneously. For a particular
application the microcode is
down-loaded from the PDP11 host
processor.

Controller

Program

-4 *...I(I

processors

I
___)

Processed
output

Linear Arrav Processoror

Figure 1

Rows of pixels are processed in
parallel, while each row is loaded
and unloaded serially. This is done
by chaining the 8 bit input/output
registers associated with each column
into a single shift register, thus
for a 256 elementary array processor
the shift register would be 2048

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

(256x8) bits long. This data transfer
occurs at a rate of 250K bytes per
second. The loading of one row occurs
whilst another row is being processed
thus avoiding a potential bottleneck
at the serial stage. Most commonly
used image processing operators using
3x3 or larger windows can be
efficiently implemented for any
precision between 1 and 16 bits per
pixel. Since processing is bit serial
the fewer bits per pixel, the faster
the processing.

Picture Processing Language [21

The basic instruction level of the
LAP PE's is a 25 bit microcode
instruction. However, to facilitate
rapid development of algorithms a
compiler has been written to
translate from the high level Picture
Processing Language (PPL) into
microcode. PPL allows convenient
expression of picture processing
operators. PPL code is entered either
from the keyboard or from disk,
allowing interactive programme
development. When used in interpreter
mode the results of an operation can
be seen immediately on the video
display. PPL has the usual language
constructs such as logical and
arithmetic operators,loops and
conditional tests. What makes PPL
useful are its pixel addressing
mechanisms. Many image processing
routines involve a pixel and its
eight immediate neighbors,for example
edge detectors can be written using a
3x3 window. PPL allows pixels to be
addressed using the following
numbering convention :

Any pixel in this window can be
addressed by reference to its number
in square brackets, for example the
statement

apply not [OI end

will produce a complement of the
current picture. This introduces the
main structure in PPL

apply end

to each pixel in turn , apply works
on every pixel in the whole image,
thus greatly simplifying the code.
For example :

apply
if [0] > THRESHOLD then white else

black
end
{simple threshold}

Feature Extraction

Four image features are extracted
f rom PCBs, two general features and
two domain specific features. The
general features are 1) outlines of
major regions and 2) line detail.
These two features are used to test
the strong form of the model free
hypothesis. In order to test a weaker
form of the hypothesis two additional
features are extracted. These are 1)
passing the image through a very high
threshold filter, so only the very
brightest points are detected and 2)
a texture based segmentation which
picks up lettering. The bright points
carry information about the location

of highly reflective objects such as
pins on IC packages. It was realised
that the tops of many IC packages can
be characterised by texture. This
texture is produced by the white
writing on the packages which
designates manufacturer and part
number. The following algorithm was
implemented and was successful in
extracting information about the
locations of IC packages.

Threshold the image to set
writing to white and package to

black.

Pass a long thin window over the
whole image, and for each
position in the image count the
number of black to white, and
white to black transitions that
occur within the window.

If the count is high then there
is good evidence for labeling
this position as being writing,
otherwise it is background.

Apply evaluates the statement 'that
follows it until it reaches an end'
and replaces the value of the current
pixel [0] by the result of that
evaluation. There is no need for the
programmer to concern him or her self
with the usual loops necessary in
other languages to apply an operation

lAPR Workshop On CV - Spedal Hardware and Industrial Applications OCT.12-14. 1988, Tokyo

CONCLUSIONS

The first two stages of ACID have
been completed, and the results
transferred to PROSYS. The first
prototype of this Prolog system has
been successful in interpreting the
statements written by SUNSYS, and has
produced partial descriptions of it
in terms of shapes, locations, and
relationships such as is-contained-by
and is-part-of. This supports the
model free hypothesis, ie it is
p o s s i b l e to produce general
descriptions of PCB images, without
the need to use domain specific
knowledge or object models at either
the iconic or intermediate levels of
processing.

ACKNOWLEDGEMENT

I would like to express my gratitude
to my supervisor Professor G. Rzevski
(Director Kingston CIM Centre) for
h i s c o m m e n t s a n d c o n t i n u e d
encouragement.

REFERENCES

[I] Walters D, Selection of image
primatives for general-purpose visual
processing. CVGIP (37) 261-298. 1987

[2] Plummer PI The Picture Processing
language compiler manual. National
Physical Laboratory, Teddington. 1982

