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ABSTRACT 

The term of complex data  set indicates that  the 
target da ta  set t o  be recognized consists of multiple 
categories of pattern samples. Recognition of com- 
plex da ta  set is a challenging research topic in com- 
puter vision and pattern recognition. The entropy 
reduction approach has been widely used t o  solve 
the problem of recognition of single category data  
set. In this paper we generalize this concept in terms 
of Entropy-Reduced Transformation (ERT) which 
contains several important properties which enable 
us t o  produce the concrete solution for the practical 
applications. Validation of the generalized approach 
is demonstrated by an example. 

Index Terms : Pattern recognition, complex da ta  
set, large set, entropy-reduced, t,ransformation, mul- 
tiple categories text. 

I. INTRODUCTION 

The term of complex da ta  set indicates that  the 
target da ta  set t o  be recognized consists of multiple 
categories of pattern samples. Generally a complex 
d a t a  set is also a very large data  set because it  is not 
only a combination of multiple categories of data  
but  also each category of da ta  may have many kinds 
of distortions such as size distortion, rotation distor- 
tion etc. which will result in a n  increasing the 
number of pattern samples. Some typical examples 
are as shown in Figs. 1 and 2. In Fig. 1 three 
categories of da ta  exist in the same text: Chinese 
characters, Roman letters and numerals. Also for 
each category of da ta  there are several kinds of fonts 
with size distortion and rotation distortion. Fig. 2 
gives some examples of rotation distortion which is 
often found in blueprints and typewritten docu- 
ments. Recognition of such complex da ta  sets is a 
very challenging research topic because it  can not be 
treated as a simple combination of the existing 
methods appropriate t o  each single category subset 
of the complex da ta  set. If a subset of da ta  inherits 

the  characteristics of multiple categories of data  
simultaneously, it  will make all the existing methods 
which are single category-oriented out  of functions. 
The more severe problem is tha t  the total number of 
pattern samples of a complex data  set is so large 
tha t  the costs of memory and time for recognition 
are unacceptable for practical applications. 

In this paper, we propose an efficient approach 
t o  handle the problem of recognizing a complex data  
set: Entropy-Reduced Transformation ( E R T  ). 
Although the concept of entropy reduction has been 
widely used in pattern recognition as a suitable cri- 
terion for the feature selection and the design of 
tree-like classifiers, the existing methods are often 
restricted t o  single category da ta  set [7,8]. Section I1 
is devoted t o  generalize the concept of entropy 
reduction as a generic transformation which contains 
two important properties of such a transformation. 
These properties enable us t o  find appropriate func- 
tions t o  reduce the entropy (i.e. the uncertainty ) of 
a complex da ta  set step by step (i.e. find the algo- 
rithm t o  simplify the problem). A concrete simula- 
tion example is presented in Section I11 t o  illustrate 
how t o  set up the entropy-reduced transformation t o  
solve the problem efficiently. 

11. ENTROPY-REDUCED TRANSFORMA- 
TION 

First let us define the notations used in this 
paper. For  a given data  set 

( 1 
W - { wi 1 i=1,2 ,..., n , we can define an t 

\ 

entropy space R = (W, P Hw), where P is the 
priori probability defined on W such that  

( i )  Pw(wi)  = Pi,  

(ii) 0 < pi < 1, (1) 

n 
( i i i )  x p i  = 1. 

i - 1  

H w  is the uncertainty measure defined on W accord- 
ing t o  Shannon's entropy theory [4] 
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A complex data  set can be represented as 

i-l 

In its entropy space Pu  is determined by the rela- 
tionships among the subsets W' 's (i=1,2, ..., m), and 
the  uncertainty of U will have an upperbound 

m 
H , < ~ H , ' .  

i-1 

The concept of entropy-reduced transformation 
is defined as follows. 

Definition: 
Let Ri = (Wi,  p W i ,  HWi)? 

R = ( w ,  P H )  ifj .  Iw' I and IwI I 
stand for the numbers of elements (i.e. pattern sam- 
ples) contained in W' and WJ respectively. Assume 
t h a t  IWi I <  I w ~  1. If a function Fji can be 
defined such tha t  

( i )  IFji(Wj) 1 = 1wi 1, 

H F ~ , ~ ~ J )  = HW', (4) 

then Fji is called an entropy-reduced transforma- 
tion. We say tha t  R, is normalized t o  Ri by Fji.  

Two important properties of the entropy- 
reduced transformation are given by the following 
theorems: 

Theorem 1 : 
Given Ri = (Wi, pWi, H ~ ' ) ,  

Rk = (Wk,  p W k ,  HWk),  and R j  = (W], P w J ,  Hwj)  
. If Fik normalizes Ri t o  R k ,  and Fkj normalizes Rk 

t o  Rj, such that  

( i )  C pi = pt ,  t = 1,2,..., Iwk I, 
wr€ F:(W') 

( i i )  C pt = p,, r = 1,2 ,..., IW' 15) 
w,E FiJ(Wk) 

where F;~(W') stands for the t-th cluster of 
Fik(Wi)  , Fi j (Wk)  stands for the r-th cluster of 
Fk j (Wk)  , then we have 

F~,(w') = F,,(F,(w')). (6) 

Theorem 2 : 
m .  

Given U = u W '  and 
8 - 1  

Ri = (w', Pwi,  H W ~ )  1 i=1,2 ,..., m 

a'nd I W i  1 = min( I W i  I) , where i,j 2 1, 2, ..., m. 
If for all Ri we can find an entropy-reduced 
transformation which normalizes Ri t o  R j  , then we 

can find an entropy-reduced transformation F which 
normalizes R u t o  R, . 

We can call Theorem 1 the cascade principle 
and Theorem 2 the parallel principle. They bring t o  
light two basic ways t o  reduce the uncertainty of a 
complex data  set. Obviously, if one of them is used 
together with the other one, more complicated prob- 
lems can be solved. Although these theorems impose 
some crucial principle to  design an efficient discrimi- 
nator t o  recognize a complex data  set, details are 
described in [1,2,3], here we would like to  stress 
another important consequence implied by these 
theorems as follows. 

Theorem 3 : 
m .  

Let U = U W '  . D is a well-designed discrimi- 
i-1 

nator for R j  = (Wj ,  p w j ,  H ~ J )  , where WJC U 
and I wJ 1 = min( 1 W' I) , i, j = 1, 2, ..., m. If 
R u  can be normalized t o  R j  by entropy-reduced 
transformation according t o  either Theorem 1 or 
Theorem 2 or both of them, then nu can be 
discriminated by D without any quality loss. 

Details of the proofs of the theorems above are 
presented in [1,2]. 

In. AN EXAMPLE OF APPLICATION 

T o  demonstrate the application of the entropy- 
reduced transformation approach t o  recognize com- 
plex data  sets, we present an illustrative example. 
Our target data  set t o  be recognized includes the 
two categories of subsets W1 and W2 . W1 is a set 
of 3200 Chinese characters, is a set of 94 key- 
board symbols (including 26 uppercase and 26 lower- 
case English letters, and 10 numerals ). Due t o  the 
necessity t o  process real life samples like those 
shown in Figs. 1 and 2, we allow all Chinese charac- 
ters, English letters, and numerals t o  have 10 
different sizes and plus a rotation of x degrees, where 
x = 1 " , 2 " , ..., 360 " . If we treat each kind of dis- 
tortion as a pattern sample, this complex data  set 
will be a huge data  set totalling more than ten mil- 
lion pattern samples ( (3200+94)X10~360 = 
11,858,400 ). The uncertainty of this complex data  
set comes up t o  about 24 bits if all the pattern sam- 
ples with even priori probability are counted. This 
will make almost all the existing methods suitable 
for single category data  set either out of function or 
very unefficient. T o  deal with this situation the 
entropy-reduced transformation approach is pro- 
posed. Our purpose is t o  reduce the uncertainty of 
this complex data  set t o  that  of a much smaller data  
set which contains only 3200+94 samples with a 
standard size (one of 10 kinds of sizes is selected as 



IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo 

AffD #*&ai!€Bem*E 
EYS%SWt9&fiB 

ADD TECHNIQUE AND ITS APPLICATION TO THE OFTWAL 
PARTIALMATCH RETRIEVAL ALCORITHY D U I C N  

ARCHITECTURE OF A DIRECT-EXECUTING VECTOR- 
ALGOL 60 COMPUTER 

Fig. I 

Fig. 2 

the standard size) and without any rotation. First 
we think the complex data  set consisting of 10 dis- 
tinct subsets. Each subset contains all the samples 
with the same size (i.e. cluster all the samples into 
10 groups according their sizes). Based on the paral- 
lel principle of Theorem 2, we define a linear 

transformation for each subset except the one with a 
standard size as follows 

where ( X, Y ) are the new coordinates of a point for 

a pattern sample with the standard size, ( xj,yj ) 
are the coordinates of a point for a pattern sample 
with the j-th kind of size, D is the standard size, d, 
stands for the j-th kind of size. If we denote the 
standard size the 1-st kind of size out of ten, then j 
= 2,3, ..., 10. After doing this the uncertainty of the 
original complex data  set has been reduced t o  the 
level of that  of a set having (3200+04)X360 possible 
pattern samples. Then a rotation-invariant transfor- 
mation defined in 13, 5) is applied t o  cluster all 360 
kinds of rotations of a pattern sample into a unique 
reference pattern sample which belongs to  a set W 
consisting of W1 and with the standard size. 
Then according t o  the cascade principle of Theorem 
1, we know tha t  the uncertainty of the complex data  
set now has been reduced t o  the level of that  of W, 
which is about 11 bits. After all these operations, we 
can now apply the tree-like discriminator [6, 81 
which is only suitable for the recognition of a data  
set in which all the pattern samples have the stan- 
dard size and without rotation like the set of W. 
Based on Theorem 3, we can use this restricted 
discriminator t o  recognize the complex data  set 
described above. This approach has been tried on a 
CYRER-835 computer and the experimental results, 
shown in the Table 1, have completely supported 
our theoretical predictions (more experimental 
results are provided in [1,2]). 

r ~ a b l e  1 Recognition Rcsults 1 

I I I 

I Error Rate 11.5% '0 1.4% 

No. clssss 3284. 

I I 

I 1 Error rate in step 1 1 0.09375% 1 0.09421% 1 

3284'. 

Speed 

98.6% Recognition Rate 98.5% 

945/sec. 

n 

958/sec. 

I. Conventional Search 

n. PLS - Search 

For complex text 

* *  For single category 

Table 1 

Error Rate in step 4 

E m r  Rate 

Rejection Rate 

Recognition Rate 

Speed 

0.01884% 

0.11305% 

O.ooS25% 

99.87% 

868/sec. 

0.01875% 

0.1125% 

0.00813% 

99.88% 

873/see. 
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IV. CONCLUSIONS 

Based on a detailed analysis of Section I1 and 
the demonstration of Section 111, we can conclude 
t h a t  the entropy-reduced transformation approach 
can provide an efficient solution for the recognition 
of complex da ta  set. It  contributes by finding and 
organizing a set of entropy-reduced methods t o  
reduce the  entropy of the entire complex data  set. 
This approach also expresses t h a t  similar as other 
information processing system, entropy-reduction is 
a main principle for every stage of pattern recogni- 
tion. Based on this principle we may develop many 
new efficient methods t o  tackle more complicated 
problems. 
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