
lAPR Workshop On CV -Special Hardware and Industrial Applications OCT.12-14, 1986. Tokyo

IMPLEMENTATION ISSUES ON PARALLEL ALGORITHMS
USING PIPELINE ARCHITECTURES IN VISUAL INSPECTION

Amelia Fong

Department of Computing and Information Science*
University of Guelph

Guelph, Ontario
Canada NIG 2 WI

ABSTRACT

Parallel architectures are increasingly being used
for vision applications where speed is an important
requirement, such as in manufacture visual inspection.
There is currently much research activities in image
processing algorithms using pipeline architectures for
industrial applications. However, for a successful
inspection system, various implementation details need
to be considered as well. In this paper implementation
issues involving refresh memory usage are discussed,
and techniques to avoid disk transfer are proposed.
Issues on software environment to support rapid pro-
gram development in order to reduce software cost are
also discussed. Our discussion will be illustrated by an
example from an algorithm for a non-linear order-
statistical filter.

I. Introduction
Due to the amount of data and speed requirement,

parallel architectures are increasingly being used for
computer vision applications, such as in pattern recog-
nition problems involving image data. These include
manufacture visual inspection, robotic vision as well as
various forms of medical imaging for diagnostic pur-
poses. In most industrial applications such as in visual
inspection there is an important requirement that the
cost be kept low so that the manufacture process
remains cost effective [Chin, 861, [Uhr, 861. Recently,
several vision systems have been proposed using pipe-
line architectures [Petkovic, 861, [Persoon, 881. Pipe-
line architectures have fast performance and are com-
mercially available, allowing applications to be tested
before dedicated equipment need to be built. Currently
there arc much research interest and publications in
parallel algorithms using pipeline architectures, includ-
ing various geometric features [SHD, 851, [Sanz & Din-
stein, 871, polygonal masks [Sanz 881, [SDP, 881, pro-
jections [Sanz & Hinkle, 881, local maximum and
minimum [Dinstein & Fong , 881, and a class of detail
preserving filters [Fong , 88aI.

*This research was partially supported by the Natural Science and
Engineering Research Council of Canada.

Because of the speed requirements, it is natural to
select the algorithm which will do the job and uses the
least number of pipeline passes. However there are
other considerations which affect the total time taken,
such as the amount of refresh memories available on
the hardware and how these affect the executions of
various algorithms. Care must be taken when imple-
menting these algorithms so that disk transfers are
avoided, which are expensive when large amount of
data such as in image applications, is involved. With
many implementation details the programming effort
required can be substantial which will add to the total
cost of the inspection system. Hence, these implemen-
tation issues are important ones. The paper is organ-
ized as follows. Section I1 describes the pipeline archi-
tectures assumed. Section III reviews an example algo-
rithm used for illustration in our discussion. Section IV
discusses implementation issues involving refresh
memory usage. Section V contains discussion on
software environment. Section VI concludes the paper.

II. Pipeline Architectures
In this section, we describe the abstract machine

architecture we are assuming. We assume a high speed
pipeline processor which takes input from a number of
image refresh memories or from a digitizer. The pro-
cessor typically consists of several parallel stages of
processing, such as described below. An example of
such an architecture is the DeAnza IP8500, whose pipe-
line processor can operate ate video refresh rate, i.e. 30
frames/sec. Other typical features include various
display capabilities, inputloutput devices such as joys-
ticks, lightpens and trackballs, programmable cursor
units, etc. which arc not relevant in our present discus-
sion.

We describe a prototype general purpose pipeline
image processor with more details. It typically consists
of an input selection stage, a multiplier stage which
(optionally) multiply pairs of selected inputs. This is
followed by one or more ALU stage(s) which performs
arithmetic and/or logical operations. These are fol-
lowed by a comparator stage, a shifter stage and a func-
tion table stage which can be used as a look-up table.

In our abstract machine model the image proces-
sor consists of a short pipe of processing units. The
processing units are general purpose units such as

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

ALU's and comparators and shifters. We assume also a
feed back loop from the pipeline processor to refresh
memories whose number can vary depending on the
particular configuration. A schematic diagram of our
abstract machine model is shown in Fig. 1. We assume
each refresh memory has an on board look-up table for
performing the basic transformations such as transla-
tions in the x or y or both directions as the data streams
from the memory. What we have assumed is a general
purpose pipeline architecture so that our discussions on
implementation issues are generally applicable.

111. An Example Algorithm
As an example, we shall consider a median filter

over all samples of a 3 x 3 window. This is an adapta-
tion from an algorithm in [Fong, 88c] where the proof
of correctness can be found.

We shall use the following notation. Define Tr[A,
(p,q)] to be the resulting image of translating the image
A p pixels in the x direction, and q pixels in the y direc-
tion. When p (or q) is negative, it indicates that the
translation is in -x direction (-y direction). In the fol-
lowing pipeline steps, max and min denote the use of
the hardware comparator which allowed tow images to
be compared pixelwise.

Algorithm:

Let P be the input image
Let P l=Tr[P, (1,0)]

Let P2=Tr[P, (2,0)]
The following pipeline passes are performed:

1. max(P.P l)=X

2. min(P,P 1)=X2
3. max(X2, P2)=X3
4. min(X1,X3)=X4
5. max(X1, P2)=X5

6. min(X2,P2)=X6

k t Y1=Tr[X6, (0, I)]
y2=Tr[x6, (0,211

Perform the following pipeline passes

7. max(X 6, Y)=X

8. max(X7,Y2)=X8
LetZl=Tr[X5,(0,1)]

Z2=Tr[X, (0,211
Perform the following passes

9. min(X5,Zl)=Xg
10. min(X9,Z2)=Xlo

Let Q l=Tr[X4. (O,1)1
Q2=Tr[X4, (0,2)1

Perform the following passes

11. max(X4,Ql)=Xll
12. rnin(X4, Q l)=X

13. max(X12,Q2)=X13
14. min(X 11,X13)=X

15. max(Xg,Xl0)=Xl5

16. min(X8,Xlo)=X16

17- max(X16.X14)=X17
18. min(X15,X17)=X18

Then X is the output image.

We shall use this algorithm as an example in the
discussions in the following sections.

IV. Implementation Issues on Memory Usage
In this section, we discuss various implementation

issues involving the use of refresh memories, a valuable
resource. In many algorithms using pipeline architec-
tures, more than one pipeline pass are required. Hence
intermediate results are stored in the refresh memories
whose content are routed back to the pipeline processor
for further transformation. Often, enough refresh
memories are assumed so that processing can continue
until completion. In reality, depending on the particu-
lar configuration, one might not have enough refresh
memories to hold all the intermediate results. This is
especially true if many different processing steps are
needed in any one inspection application, such as
smoothing followed by edge detection and other seg-
mentation steps. In such cases, writing to disk and
reloading from disks may be necessary. Due to the
amount of data involved with images, this data transfer
can significantly affect the overall performance.

There are various techniques pertaining to imple-
mentation which can minimize the number of refresh
memories required. We shall discuss them below.

4.1 Multiple output copies
This technique can be illustrated by our example

above. Consider steps 12 and 13 in the above algo-
rithm. Images Q 1 and Q 2 are used as operands. Note
that Q 2 is Tr[Q 1, (O,l)] based on the relationships of
Q l and Q 2 to X4. Hence when X4 is computed, the
output can be routed to two separate refresh memories.
By setting the on-board registers on the two refresh
memories, both Q 1 and Q 2 can be obtained by translat-
ing the input as it streams out of the respective
memory. This saves extra pipeline passes for setting up
operands.

4.2 Original image recovery
This can be illustrated by the algorithm above.

The algorithm involves manipulating the images P, the
original image, Pl = Tr[P, (LO)] and P2 = Tr[P, (2,O)I.
It can be seen that at any given time only one of these
images need to be around. P can be recovered from
either P 1 or P2 by translating in the opposite direction
so that it need not be saved nor reloaded. By careful
use of this technique, we find that the above algorithm
requires only 6 refresh memories, assuming the use of
one comparator at each pipeline step.

IAPR Workshop on CV - Specla1 Hardwa~ .e and Industrial Applications OCT 12-14. 1988. Tokyo

4.3 Loading of input images
Sequence of input images should be loaded in suc-

cession as required, to avoid occupying refresh
memories before it is being used. Due to space limita-
tion, other algorithms which use more than one input
image are not included here. An example can be found
in the algorithms for hybrid filters in [Fong, 88al.

4.4 Multiple processing units

Multiple processing units allow more parallelism
and usually improve the time required considerably.
For example, the above algorithm can be implemented
using 10 pipeline passes, assuming two comparators
which can be set independently, as is the case in the
DeAnza IP8500. However, this results in more inter-
mediate results being simultaneously generated which
need to be stored in refresh memories. In our example
algorithm, if two comparators are used in parallel, 9
refresh memories are required. Hence, in the case
where a configuration does not have enough refresh
memories or where the memories need to be saved for
other usage, an algorithm using less than all processing
units can be used in order to avoid disk transfer, which
may be more costly.

4.5 Use of copy instead of disk transfer

Sometimes, an extra pipeline pass may be used to
copy an operand instead of saving the image and
reloading it from disk. This can reduce the number of
refresh memories required at the expence of one extra
pass. In the above algorithm, this technique can be
used to reduce the number of refresh memories required
from 9 to 8. However, in many instances, the steps
need to be reorganized to make this possible.

V. Implementation issues on software environment

As discussed earlier, given a particular algorithm
for a pipeline architecture, a number of implementation
details need to be designed, in order to take full advan-
tage of the hardware. This often requires resequencing
of the steps, with an eye towards increase parallelism,
while at the same time conserving refresh memories
used, avoiding disk transfer whenever possible. Once
these details are worked out, each pipeline pass must be
programmed explicitly, including specifying all bus
connections to and from individual memory and setting
up all on-board look-up tables. As a result, the pro-
grams are difficult to develop and maintain.

The amount of time needed to develop and debug
the programs can greatly undermine the cost-
effectiveness of a pipeline system used for inspection.
In the following, we briefly discuss the software
environment that can enhance ease of implementation.

5.1 High level language construct

Implementation effort can be greatly reduced if a
high level language environment that capture both the
capabilities of the hardware as well as the domain of

applications is available. It should provide high level
data structures as well as abstract operations and
transformations appropriate to the image processing
domain. A preprocessor need to be developed to parse
and generate good low level code for the hardware.
Debugging facilities should be provided as well. One
such proposal can be found in [Fong, 88bI.

5.2 Software design tools

Given the design strategies already discovered on
the implementation details of algorithms on pipeline
architectures, it would be useful to have design tools
that facilitate or automate some or all of these steps. A
design toolkit may propose alternate sequencing of the
pipeline steps. Transformations based on algebraic pro-
perties may be applied to uncover opportunities for
optimization. A software tool for automatic assignment
of refresh memories and for setting up the memory
registers may be provided by the toolkit as well.

5.3 Graphical interface

For the experienced user who knows the hardware
intimately, a graphical interface which allows routing
through the pipeline processor by indicating it on the
screen would be a useful tool. This is invaluable in the
case where maximum performance is required in
specific area of an application and rapid low level cod-
ing may be achieved by explicit routing.

VI. Conclusion

In this paper, we have discussed various issues
pertaining to the implementation of parallel algorithms
on pipeline architectures. In particular, we discussed
the implication of refresh memory usage and propose
techniques useful for detail design and sequencing of
pipeline steps, We also discussed the importance of
program development environment in order to reduce
software cost and improve overall performance of an
inspection system.

References

[Chin, 861 R.T. Chin, "Algorithms and Techniques for
Automated Visual Inspection", in Handbook of
Pattern Recognition and Image Processing, ed. by
T.Y. Young and K.S. Fu, Academic Press, 1986,
pp. 587-612.

[Dinstein and Fong, 881 1. Dinstein and A.C. Fong
(Lochovsky), "Computing Local Minima and
Maxima of Digital Images in Pipeline Image pro-
cessing Systems equipped with Hardware Com-
parators:, Proceedings of the IEEE, to appear.

[Persoon, 881 E. Persoon, "A Pipelined Image Analysis
System Using Customed Circuits", IEEE
Transactions on Pattern Analysis and Machine
Intelligence, PAMI- 10, Jan., 1988, pp. 110- 1 17.
pp. 74-90.

lAPR Workshop On CV -Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

[Petkovic, 861 D. Petkovic er al, "An experimental
system for disc heads inspection", h. of the 8th
Int. Conf. on Pattern Recognition, Oct. 1986,
Paris, France.

[Sanz, 881 J.L.C. Sanz, "A new method for computing
polygonal marks in image processing pipeline
architectures". Pattern Recognition, to appear.

[Sanz & Dinstein, 871 J. L.C. Sanz and I. Dinstein,
"Projection- based Geometrical Feature Extraction
for Computer Vision Algorithms: Algorithms in
Pipeline Architectures", In IEEE Transaction on
Pattern Analysis and Machine Intelligence, Jan.
1987, pp. 160-168.

[SHD, 851 J.L.C. Sanz, E. Hinkle, and I. Dinstein, "A
new approach to computing geometric features of
digital objects for machine vision, image process-
ing and image analysis: Algorithms in pipeline
architectures", in CVPR 85, San Francisco, CA,
June 1985.

[SDP. 881 J.L.C. Sanz, I. Dinstein and D. Petkovic,
"A new procedure for computing multi-colored
polygonal masks in image processing pipeline
architectures and its application to automatic
visual inspection. "to appear, CACM.

[Sanz & Hinkle, 881 J.L. Sanz and E. Hinkle, "Com-
puting projections in pipeline architectures", IEEE
Trans. Acoust.. Speech, Signal Processing, to be
published.

[Uhr, 861 L. Uhr, "Parallel Architectures for image
processing, computer vision, and pattern percep-
tion, in Handbook of Pattern Recognition and
Image Processing, ed. Young and K.S. Fu,
Academic Press, 1986.

[Fong, 88a] Fong (Lochovsky), A,," Computation of a
class of detail preserving filters in Pipeline Archi-
tectures". to appear in VISION '88, sponsored by
Canadian Assoc. of Pattern Recognition, Edmon-
ton, June, 1988.

[Fong, 88b] Fong (Lochovsky), A., "Increasing
Software Productivity of Pipeline Image Process-
ing Architectures in Manufacture Inspection
Applications", IEEE 1988 International
Conference on Systems, Man & Cybernetics, Beij-
ing, China, Aug. 1988, pp.1138-1143.

[Fong, 88cI Fong (Lochovsky). A., "Parallel computa-
tion of several classes of median filters using pipe-
line architectures", Technical Report CIS 88D5,
Dept. of Computing & Information Science,
University of Guelph, June, 1988.

Fig. 1. Schematic Diagram for Pipeline Architectures.

