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Abstract — A method for quantitative shape
recovery of an object from a single picture is
proposed in this paper. By introducing a
3-dimensional dual space, four basic con-
straints between a polyhedron and its central
projection image have been found. A procedure
is then given to recursively obtain the quanti-
tative descriptions of planar-surfaces of the
polyhedron. A general solution form is also
established to represent the polyhedrons which
are possible to generate the given projection
image. How to obtain a natural solution from
the general solution form by the use of gray
level information is finally discussed.

I. Introduction

Steredscopic shape recovery has been investi-
gated quite extensively, but there is not much
work on quantitative shape recovery from a
single view. The difficult associated with
this task is that during the process of image
formation, some spatial information of an
object has been lost. In order to recover the
3-dimensional shape of the cbject, we must
utilize enough constraints between the cbject
and its projection image.

For the case of orthographic projection,
Mackworth [1] discovered that the gradients of
two planes of a polyhedron in gradient space
should be on a line which is perpendicular to
the projection line of the common edge of those
two planes., Using this constraints, the line-
labeling task can be completed for aline draw-
ing. Kanade [2] combined this constraint with
surface cues such as parallelism and skew sym-
metry to perform quantitative shape recovery in
gradient space. The gradients of visible
planar-surfaces of a polyhedron corresponding
to a given line drawing have been obtained.
However, the constraints infered in gradient
space give only necessary conditions for a line
drawing correctly representing a polyhedron, so
there is no assurance that the recovered shape
forms a polyhedral scene (see [3] and [4] for
example) .

In this paper, we introduce a 3-dimensional
dual space instead of the gradient space, and
find four basic constraints between a poly-
hedron and its central projection image. Based
on these constraints, a procedure can be con-
structed for recursively obtaining the quanti-
tative descriptions of planar-surfaces of the
polyhedron. A general solution form is also
established to represent the polyhedrons which
are possible to generate the given projection
image.

Finally, we discuss how to get a natural
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solution from the
use of gray level information.
II. The dual space
Let D be a line drawing representing the
projection image of a polyhedron in 3D Euclidean
space R®*. A node vi on D corresponds to a

L
i

eneral solution form by the

vertex V. on the polyhdron. A line on D

corresponds to an edge 1.i on the polyhedron.
And a region s; on D corresponds to a planar-

surface S, on the polyhedron. 1In what follows,

we adopt the so-called non-accidental assumption,
so that line drawing as shown in Fig. 1 is out
of our consideration.

Given a line drawing D, we take the image
plane as xy-plane. Let O be the origin on the
plane, and z-axis point to the view direction.
The view point is 0'=(0,0,f), where f>0 is a
camera parameter. Fig. 2 shows the process of
image formation.

Suppose that li is a line on D, let [li]

denote the projection plane which generates li'
If on xy-plane the equation foxr li is pix+qiy
+f=0, then in R? the equation for Elil is

pix+qiy-z+f=0 due to 0'=(0,0,f) and 1i being

on [1i]. In this way, we can cbtain the equa-

tions of all projection planes which generate
the line drawing D.
A visible plane 5i on the polyhedron corre-

sponding to D can be represented by a normal
form equation pix+qiy+diz+f-0, where Pys 9y

and di are parameters. All parameter vectors

of the form (p; g;,d;) make up a new 3-dimen-

i
sional space, which is called the dual space
and is denoted by D(f). Since a plane S in R*

corresponds to a point (pifqi‘di) in D(f), so
the latter is sometimes called (pi,qi,di)-plane.

As mentioned above, every projection plane has
the form [li]-(pi,qi,-l). Hence, it lies on

the plane d=-1 in D(f). Let L be the set of
projection planes generating the line drawing
D, then L is a known set of points in D(f).
the other hand, the set of visible planes on
the corresponding polyhedron is an unknown set
of points S in D(f). It is easy to see that
the quantitative shape recovery of an object
corresponding to the line drawing D can be
stated as the following problem in D(f): to
find out the unknown set of points S from the
known set of points L. In order to solve this

On
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problem, we need to descover some constraints
between S and L, which is the major task of
Section III.

II1. Basic constraints

Suppose that sS4 is a region on the line
drawing D corresponding to a visible plane Si
of the polyhedrons. Let 1j be a boundary line
of s and Vj1={x1,y1), Vj2=(x2,y2) be the end
points of 1j {see Fig. 2). We can construct

four planes in the dual space D(f) as follows:

“1 : x1p+y1q+f=0,
“2 . x2P+Y2q+f=O!
Ty od x1p+y1q-fd=0,
ki

G x2p+y2q-fd=0.

Let I(1l.) be the region bounded by these four
planes And containing the positive part of
d-axis. Obviously, (p,q,d)€ I(l.) in space
D(f) if and only if )

(x,pty a+f) (x,pty,q-£d) 50
(x2p+y2q+f}(x2p+y2q—fd]$0

Thus, we have
Lemma 1. If 1ﬁ is a boundary line of region

s,, and s,
i i

i 3 ) i
in B3, then S, (pi,qi,di}éltlj} in D(£f).

is the projection image of plane si

Now let Ni={lj]1j is a boundary line of

region si}. then a region

I

c(si} =
leNi

I(1,
{13)

can be obtained in space D(f). Since every
I[lj} contains the positive part of d-axis,

50 C(si}

cbtain:
Constraint 1. If region s, is the projec-
tion image of plane S; in R3, then SiEC(si)

is not empty. From Lemma 1, we

in the dual space D(f).

Constraint 1 means that the shape and loca-

tion of a region s; on the line drawing D
restricts the corresponding plane §; . Not

every plane can generate the projection image
like Si - There exist other constraints
between SiE S and [1k]G L, which are given
in the following.
Constraint 2. If two planes Si and sj
the projec-
3), then the

D(f) are

in R? have a common edge Lk' and
tion image of Lk is 1k (see Fig.

points S,, S, and [1,] in space
i 3 k
colinear.
Constraint 3. Lkl edge of plane
is an edge of plane Sj'

i Ly and ezt Tya
are coplanar in R® (see Fig. 4), then the
points Si, Sj, [lkll and [1k2] are coplanar

If is an
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in space D(f).

If a plane sj in R?* is occluded by a plane
Si (as shown in Fig. 5), then the common

boundary line 1, of

the corresponding region sj

Let the

k

and s, is called an occlusion line.

end points of 1k be v ,=(x,,y,) and

Vi2

={x2,y2}. Make two lines 1': x,pty q+f=0 and
1*: x2p+y2q+f=0 on

D(f).

the plane d=-1 in space
Si={pi.qi,di), then make

two planes n' and 1" in space D(f) such that
m': x'p+y'g+z'd+f=0 passes through 8; and the

Suppose that

line 1', and w": x"p+y"q+z"d+f=0 passes
through Si and the line 1". Let J(Si,lk}
denote the open region bounded by planes 7',
" and d=-1, and containing the origin. A
point (p,q,d)E.J(Si,lkl in D(f) if and only if
(x'pty'qg+z'd+f) (d+1) >0 and (x"p+y"gt+z"ad+f) (d+1)
>0. Thus we have

Lemma 2. If a plane Sj in R?® is occluded by

a plane Si. and the occlusion line is 1k as
shown in Fig. 5, then sjEJISi,lk] in space

D(f).

Furthermore, if V,

k1l
plane Sj in R3®, then Sj is on the plane 7' (or

") in D(f)

(or V,,) is on the

(see Fig. 5). Especially, when

3
both vkl and V., areon the plane Sj in R?,

then Sj must be on the intersection line of 7'
and 7" in D(f). 1In this case, planes Si and Sj
are intersected at line Lk' and the projection
image 1k of Lk is no longer an occlusion line.
Hence, for generality, let J(si,lk) be the
closed region consisting of J(Si'lk) and its

boundary.

we obtain:
Constraint 4.

an edge L.k of plane si be 1k‘

Then combining Lemma 1 and Lemma 2,

Let the projection image of
If 1k is the

common boundary line of regions s, and s, on

J
the line drawing D (see Fig. 5), then the cor-

responding SjEItlk)F\EtSi,lk} in space D(f).
I(lkl
part of d-axis, and J(Si,lk] contains the

Since region contains the positive

origin, so that I(lk)f\E(Si,l is not empty.

k]
In what follows, we use E(Si'lk) to represent
it.

Up to now, we have discovered four con-
straints which reflect the relationship between
the known set of points L and the unknown set
of points S in space D(f). One can refer to
[6] for the proofs of their correctness. Using
these constraints, we can construct a procedure
to obtain the elements of S, which guantita-
tively describe the 3-dimensiocnal shape of an
object corresponding to the given line drawing.

IV. The Procedure

In this section, we utilize four basic
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constraints given above to construct a proce-
dure for the solution of unknown point set S in
space D(f).

The region C(S,) given by Constraint 1 is
used to determine the initial conditions. Con-
straints 2 and 3 are used to establish the fol-
lowing solution rules.

Rule 1. If SkE S, and in R?* the planes Sk
and 51
and sj have a common edge Lkz' then in space

D(f),

sk-Pl{si' [1k1]: sj: IIRZ]):

where P. is a linear operator which makes one
line paSsing through the points S, and [lkll '

have a common edge I‘kli the planes Sk

another line passing through the points S: and
[lk2] , and then takes the intersection point of

them.
Rule 2.

and si have a common edge I'kl’ besides, the

2 44 SkE S, and in R*® the planes Sy

edge I.kz of plane Sk and the edge Lk3 of plane

Sj are coplanar, then in space D(f),

8= Pp(S; (Lgls S4 [L,0, (LD,

where P, is a linear operator which makes a
line passing through the points Si and [.'H(l] ”

and a plane passing through the points sj,
[lkZ] and [1k3] , and then takes the intersec-
tion point of them.

Rule 3. If Skls, and in R?® the plane Sk has

three edges Lkl’ l:.k2 and I’k3' in which L and
the edge Lkdl of plane S:i.l are coplanar; Lo

and the edge Lk5 of plane §;, are coplanar;

2
LkB and the edge LkG of plane 513 are coplanar,

then in space D(f),

S P3(Si10 Mgl Mgl S350 Mol [yesls
Si30 (yals (gl

where P3 is a linear operator which makes one
plane passing through the points sil' [lk:l] and

llk 4]+ one plane passing through the points

s

127 [1k2] and [lk5] , and the other plane pas-
sing through the points S,

i3’ “‘k3] and [1

and then taking the intersection of them.
Constraint 4 will be used to determine the
spatial relations between the planes cbtained.
Now, we are going to construct the procedure.
To make the statements more clear, we explain
some notations first.
r is a ternary relation.

X6l

{si, lk' sj}Er
if and only if regions S and sj have a common
boundary line lk on the line drawing D.

r, is a subset of r. (s;4 11:' sj)é r, if

and only if it belongs to r and two end points
of lk are not the "T" type nodes on the line

drawing D.
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r, is a subset of r. (si,lk,s )E‘r2 if

2|
and only if it belongs to r, and 1 has an end
point of "T" type with s; on the upper side
(see Fig. 5).

Rl is a ternary relation. (Si, Lk,sj)enl
if and only if planes Si and Sj are intersected
at the edge Lk

R2 is a ternary relation.

if and only if plane Si occludes S

Obviously, the ternary relations r, r, and

tsi.Lk;Sj)E R,
3 at the edge

r, can be obtained directly from the given line

drawing, but R, and R

1 2
the execution of quantitative shape recovery
procedure. The procedure is as follows:
Procedure 1. Quantitative shape recovery of
an object corresponding to a given line draw-
ing D.
Step 1.

can only be obtained by

Set S=¢, R1=¢ and Rz=¢ i

Select Si= (pi,qi,di) in space D(f) such that
(p;,q;,d,) €C(s,), and let SﬂSU{Si}.

If (si,lj.sklerl, take a point tpk.qk.dk) on
the line passing through the points Si and “j]
in D(f), and such that {pk.qk,dk}GC{Sk).
Then let Skﬂ{pk,qk,dk} and go to step 3.

Step 2. If si.sjes, and (sp,1,,.8;), (5,
lkz,sj}e r,, then let 51;“'1‘51'[11‘1] i Sj' “u”
and go to step 3.

If si,sjes, and tsk’lkl’si:' (sk,lkz,st), {st,
]13.53.] €r,, then let § =P, (s ,[1,,] ,Sj,[H‘zl '
[1k3” and go to step 3.

A€ 811+815:813€ 5, and (g, 1y,,8,,) s (8ey0lys.
Si1) v (SrlyaeSea) o (Sppelygr8io) o (Syalyges,3)y
‘%3*1;:6'513’5 r), then let Sk=P3(sil,[1k1] .
(alr Siorllyols (145,855, [1 5], [ 6]) and go

to setep 3.
Otherwise, stop.

Step 3. Let Slc be the plane currently con-
sidered. Take (s, ,l1.,s,)€r and §,€8S.

If 5, (11,5 are cdlifiear in space D(f), then
let l(Sk,Lj,si}e.'-ER:l and go to step 4.

If SkGE(Si,lj) and (si.lj.sk}e r, {ox rl).
then let (Si, Lj' sk}e Rz and go to step 4.

If SieEtSk,lj} and (sk,lj,si)é x, (or rl),
then let (Sk,Lj,si)e R, and go to step 4.

Otherwise, stop.

Step 4. Let s=sU{s, }. If the cardinal
number of S is equal to the number of regions on
the line drawing D, then stop, otherwise go to
step 2.

V. General solution form and the use
of gray level information

In Section IV, we have completed the gquanti-
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tative shape recovery of a polyhedron corres-
ponding to a given line drawing. It is des-
cribed by a set of points S in the dual space
D(f). However, the determination of S depends
on four parameters. The reason is that in step
1, the initial point S, is selected arbitrarily
within a region C(s,), and S, is selected arbi-
trarily on a line passing through the points §

and [Ik] already known, so the former depends
on three parameters and the latter depends one
parameter. It is not surprised that Procedure
1 will get different solutions if the initial
5, and S, are selected differently. This phe-
nomenon reflects the fact that a line drawing
may correspond to many objects in R3®. For
example, two different objects ABCDEFG and
A'B'C'DEFG shown in Fig. 6 will generate the
same line drawing. In this section, we give a
general solution form to represent the polyhe-
drons which are possible to generate a given
line drawing.

Notice that the set of points S in space
D(f) are determined by the operators P, P

1

2
and P, based on some colinear or coplanar rela-
tions. In order to cbtain the general solu-
tion form, we consider a transformation denoted
by 17 in space D(f) such that the following con-
ditions are satisfied:

1. 1 preserves the colinear and coplanar
relations between the points of L and S.

2. T keeps the points of L unchanged.
Then after transformation, the output of S is
still a solution of the quantitative shape
recovery problem for the given line drawing.

From condition 1 above, it is easy to see
that 1t is a homogeneous linear transformation.

And condition 2 shows that an invariant sub-
space exists. Now, we augment D(f) to a homo-
geneous space such that a point (p,q,d) in D(f)
corresponds to a point (p,q,d+1,f) in it. Let
S={SiISi=(pi,qi,di}, i=1,2,+--,m} be the

initial solution obtained by Procedure 1, and
the corresponding point set in the augmented
space be {Sialsia=(pi.qi,di+l,f}, i=1,2,+++,m},

then the transformation 1 can be written as

- - T
o O o

3
2
3
4

O O O =
o O = O

It can be proved that TS;a , i=1,2,***'m

in usual gives the general solutions to the
quantitative shape recovery problem of a line
drawing, where ll' 12, 13 and l4 are para-
meters to be determined.

In order to determine these parameters, it
is needed to utilize some additional informa-
tion. One of them is the use of gray level
information whenever the line drawing is
obtained from a gray level image. Please refer
to [6] for the detailed formulas.

For example, Fig. 7 is a picture of a poly-
hedron taked under a natural illumination.
Consider the line drawing extracted from Fig.

7. By executing Procedure 1, an initial soclu-
tion can be obtained as 51,---, 38' where the
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first five surfaces are visible, i.e. S={Sl,

**+,5_.}. A special solution obtained by above
method is shown in Fig. B, After that, we can
get the gray level images of the cbject in dif-
ferent view directions artificially, and the
results are shown in Fig. 9 Obviously, these
are in accord with the perception of human
vision.

Finally, one can refer to [6] for an exten-
sive discussion about the quantitative shape
recovery of a complex polyhedral scene, and the
approach for handing errors existed in a real
image. It is also proved in [6] that the four
basic constraints given in Section IV are the
necessary and sufficient conditions for the
existance of a polyhedron corresponding to a
given line drawing.
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