IAPR Workshop on CV - Special H.

and Industrial Applications OCT.12-14, 1988, Tokyo

A General Recursive Filtering Structure for Early Vision and its Hardware
Architecture

R. DERICHE - H. GUIOT - G,

RANDALL

INRIA - Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex - France

Abstract

W present the hardware architecture of an highly effi-
cwent recursive filtering structure. It allows Lo implement
i very eflicient way several classical problems involved in
catly computer vision. Smoothing, differentiating and im-
ape vige extraction are done using this recursive filtering
structnre with a fixed number of operations per output
clement independently of the conswdered resolution. The
dillerents parts composing the hardware architecture are
whentilied and presented in detal

I Introduction

e nnportance of edge information has led w extensive re-
warch on their detection, description and use in computer
victon systems, Several methods have been proposed and
st ol them suggest o first smooth the nnage, in order
teoremove noise, and second to consider estimates of the
tist or second derivative over some support as the appro-
priate quantity to characterize step edges. Respectively,
peeah and zero-crossings detections are then performed for
the « slraction step.

Fecently, we proposed an highly efficient recursive filter-
v rneture Lhat allows to smooth, dillerentiates and ex-
tact edges i a very eflicient way (1], Here, we deseribe one
pee=ihle hardware implementation of this filtering strue-
ture i order Lo be used as an edge detector stage working
aba video rate. Such a perforinance is necessary for Lypical
nislale robot applications

A general outline of the edge extraction algorithi is
pivonn lignre 1 It consists of an initial convolution of the
e with two separable filters in order Lo get the flirst di-
rev Lonal derivatives. The gradient magnitude is then per-
Lot and points presenting a local maxima in the exact
eradient direction are labeled us possible edges. An hys-
o as thresholding, not considered in this architecture, is
then apphed to remove edges with low gradient magnitude.

The edge extraction is done using the optimal opera-
tur, with respect Lo localization and detection, that we
hawe previously developed [3| by extending Canny’s work
12, to Infinite Impulse Response lilters ‘Tlhis lilter presents
pownl theoretical and experimental performance on noise
suppression, detection and localization of edges in noisy
stgnals In the one-dimensional case, it corresponds to the
first derivative operator and can be exactly implemented
moa recursive way as follows ¢

ailn) z(n 1)1 2 “yi(n 1) e Myg(n 2)
forn 1, M (1)

ue(n) w(n 1)t 26 Yyafn 1) € *ya(n 1 2)
form M, .1 (2)
aln) (1 € “Plyz(n) wi(n) forn 1, M (3)

Lielationships 1 through 3 give a very ellicient procedure
o caliulating the lirst derivative of the input signal :{n]
al any resolution, fixed by the parameter @ using only 5
mltiplications and 5 additions per output element.

T he Tollowing second order recursive implementation is
wsed i order Lo implement the smoothing operator:

derivation
-
N grad
input L.. norm wdye
pluel
i I L
thin Im
— extraction
¥ |rl¢_h

Figure 1@ General overview of the edge extraction scheme.

klz(n) t ¢ *(a
wi(n

r(n 1) ¢

ui(n)
F 2)forn 1, M (1)

2 %y(n 1) e

“kfe *(at V)z(nt 1) - e *e(n+2)] 4
Bapa(n 1 2) for n—M,...,1 (5)

va(n)
2e “ya(n 1 1) ¢

y(n) = wyiln) | wa(n) forn 1M (6)

(i«)

14 2e 2 ¢ (7

By adjusting the parameter o that determines the im-
pulse response width, we can effectively control the size
of our operator and thus the amount of noise suppression
without increasing the number of operations per ontput.
This shows the main advantage accrued in using the recur-
sive implementation. Using a non-recursive implementa-
tion, a number directly proportional to the filter size would
Liave been required to compute the convolution operation.
As an example for a5 a 16 its direct convolution will
require ruugt:ly 57 operations. For o 25, the compula-
tional effort increases Lo 113 operations per output element
while it does not change for the recursive implementation.

To obtain the gradient i X, the image must be derived in
the X direction and the result smoothed i in the Y direction.
To obtain the gradient in Y, the same process is repeated
but with X and Y swapped. In order to derive the image
in the X direction, each row is filtered from left to rigth
using equation 1 and [rom rigth to left using equation 2.
A temporary result is then obtamed by subtracting both
results as indicated by equation 3

The smoothing filter is then applied o the columns of
the temporary image obtained Equation 4 is applied from
top to bottom while equation 5 1s applied from Enl.l.mll to
top. The final result 1= then obtained by application of
equation 6.

All the filters used are secoand order recursive filters that
can be implemented using the lollowing general form:

y(n) are(n) | agr(n 1) ¢

biy(n ~ 1)+ bay(n 2) forn 1, M (%)

266

|APR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

Figure 3° Video rate gradient computation.

I should be pointed out that for the filter given by 5, a
by has to be added in order to use this general structure.
I coeflicients used characterize the filter (smoothing or
first derivative) and the parameter o determines the im-
pulse response widith of the operator. This structure is
well adapted for the smoothing and derivativation oper-
atis and allows to deal with very large filters. This is
not the case for a classical FIR implementation where the
tnber of coefficients is fixed.

Figure 2 allustrates the canonical form of this general
recursive filtering structure.

2 Hardware architecture

In wrder to reduce development cost and complexity we
need Lo divide the system in some similar basic building
blowhs Our first idea was to build blocks in order to do the
Lasie funetions of figure 1 (filtering and memory transposi-
tion) Su we inust have a basic second order filter (BSOF
sl womemory that can take input data in row order an

autpt them in column order, we name this last block:
corter turner memory (CTM).

We can define each building block as a hardware module,
vne lor hltering and one as CTM. Developing the hardware
i this modular way seems easier and more flexible than
trying to unplement all the system in a big unit. If we use
this approach, the edge detection at video rate can be done
i shown in figure 3

Figure 3 shows the implementation of the edge extrac-
tion anodule. The data How s divided by two in order to
ptallelize the calculation of X and Y gradients. Deriva-
twim and smoothing are implemented with the same IR
hlock and appropriated coeflicients. CTM blocks switch
rows and columns addressing of data between input and
wutpit The X and Y gradient data flow at the output
of the lilter block is directed Lo the non mazima local ez-
traction block (NML), where pixels are labeled as possible
edges before the hysteresis thresholding block.

Using the commutativity property of convolution opera-
tion leads Lo economize two C'TM blocks as shown in figure
1 However, it should be poanted out that such a solution
leads to work with the transposed image in the following
e lules. We must care to take into account this economs-
wal modification.

Another implementation s illustrated in figure 5. The
data low concept s not preserved here. The input image
i~ stored i the multiple frame memory (MFM). Derivative
anid smwoothing filters in X and Y directions are sequen-
tially applied to the data. Intermediate results are stored

267

..m.uﬂ.@.[.....m. }ﬂ

input h:-d' . *
atract. | g
smoothing derivation | phusls

Figure 4: Minimal video rate gradient computation.

IIR block

ey ol

Multiple frame
mamory

control loglc

Figure 5: gradient extraction with two boards,

in the MFM. The HIR block is the same as in the previ-
ous approach. The data moye between filter and memory
boards until total processing of the image. The cross port
switch changes the data pathway and the address generator
switches rows and columns when necessary. This approach
is cheaper (it uses only one IR and memory blocks) but
does not work at video rate.

2.1 Corner turning memory

The 1R filter works sequentially with fow of data.
The corner turning memory (CTM) exchanges rows and
columns data in order to transpose the image and to ac-
cess the columns in a sequential way.

Figure 6 shows the principle of the CTM block. For
each clock cycle, one pixel of image at time n is read and
output and one pixel of image at time ni 1 is input and
written at the same address. Fvery new frame cycle, the
address generator switchs from present addressing mode to
orthogonal addressing mode. This sulution introduces one
frame delay in the edge extraction pipeline at this step of
the computation.

2.2 1IR block architecture

High speed monolithic IR building blocks are not com-
mercially available at this date. One possible solution is Lo
use FIR commercial available blocks (IMS A100, ZORAN,
L1 FIR chip, etc.) in order to realize an IR filter or to
approximate it. But there are two major problems: speed,
and coefficients and data width. It s possible to implement
an IR filter by using two FIR building blocks or by swap-
ping the coefficient register bunk in a FIR building block
of type IMS A100. Another approach is to implement the
algorithm with an FIR filter but all the generality of the
recursive implementation is lost. FIR modules operating
al video rate are available, but only with 4 to 8 coefficients
on 12 bits, this word width is too stall for our stereo vision
application.

Our proposed 1R block is the most general form of the
filter, it allows a great varintion of the resolution parameter

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

read

wrile

rad: frame n-1
write: frame n

addressing mode

n
ns+l
ne2

read: frame n
write: lrama nsl
linsar row
addressing mode

or n-1 & n2

I [1

MUK Zbus=>1bus H MUN 2bus=>1bus

MUK 2bus=>1bus

MUN 2bus=>1bus

I'igure 70 Hardware implementation of a second order [1R
lilter

o without loss of precision in the position of the edges and
without instability.

IFigure 7 illustrates the hardware implementation pro-
posed. New input data is clocked into the filter every 150
ns The lilter cell works twice faster in order to multi-
ply the delayed data by appropriated filter coctficients and
alids 1t in an MAC’s accumulator. In order to implement
the hlter equations, the appropriated filter coeflicients and
the nnmber of delay taps are programmed g

T'wo multiplier-accumulator building blocks (MAC)
warking at 35ns, are used. This performance and the nse
of multiplexers permits to economize two MACs. A se-
queneer controls the filter cell. It has three functions:

e Determination of te right number of delay taps in X
duta puthway according to the filter used

e Swupping of the MACs inputs in order to multiply
delayed data by appropriated coefficients.

e luhibition of MAC accumulation every even points.

Iigure 8 illustrates the architecture of the 1R general
tiosdule The structure is duplicated in order to work in a
Hip- 1l way.

I'wa HR cell filters are present and work with successive
rows of the image (or columns if a C'T'™M has made the
necessary inversion). A Lemporary row memory permits
the filtering in both directions and the vutput adder is
used 1o - inpute the results.

268

0 T
7|
¥H
ll:.l'l T
/
A
§ e 'mm
i $
B
[e [B E
8|28 [1L
¢

LINE MEMORY 1

LINE MEMORY 2
address bus

<
383
Figure 8: 1R board architecture

e Data line n is input through the input multiplexer and
directed to the line memory 1 and through the filter
block 1 to the temporary memory 1. The adder is
inhibited and the output multiplexer is connected to
the other side of the module.

Data is write in line memory | and temporary memory
in the same direction and the filter order is selected
according to the application.

The address bus is complemented. The filter order
and coefficients are changed. Data stored in memory
line 1 is filtered and added with temporary mnemory 1
content. The result of the addition is directed to the.
output multiplexer.

The other side of the block works identically with line
n-1.

2.3 Local maxima extraction

The non maxima suppression scheme uses a nine-pixel
neighborhood and requires three points, one of which will
be the current point, and the other two should be esti-
mates of the gradient magnitude at points displaced from
the current point by the vector normal o the edge direc-
Ltion.

If the gradient of the current puint is greater than its
interpolated neighbors, the current point is then labeled
as a possible edge point. The difficulty of this algorithm is
that it computes an interpolation vperation. This problem
is solved by the hardware structure of figure 9. At the
input of this stage, two lovkup tables are present.

e A gradient module L'l It gives the norm of the gra-
dient magnitude Lo the neighborhood structure.

e A gradient direction and sense LUT which controls an
8 to 4 multiplexer in order to send Lo the arithmetic
unit the neighbors to be mterpolated. Both interpo-
lations are made in parallel. ‘I'he output comparison
is made with the module norm of the current point.
The output of this block is boolean and differentiates
edge points and no edge poiuts,

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

W M cental pont & looal maxima

Figure 9. Local maxima extraction

#{ lrame delay
derlvl pp—— e - - - - - - - - - -
CT™1 ——————- -
smoothl & b = = = T ——
cve - e B
dariv2 R S P .
local
maxima L Ry P -
exiraction
one frame delay in
local maxima extraction
lg—p 107 lines dolay in the filer belore
begin local maxima extraction
one frame delay In the CTM
one fine delay in tha filler

.J wo frames plus
T five lines

Figure 10: Timming diagram

Iu ligure 10 we give a global timing description of the
gradhient extraction. Because of the necessity of an inver-
ston between row and column at every pass of the filter,
wi st wail for the completion of the first filtering pass
bwlone beginning the second pass. So we can see that this
pipehine introduces 2 images and 5 lines delay between in-
pirt andd vutput, even if we compute everything at video
rite o ligure 10 we can read in Y axis the board name, in
Noanis the time and the solid line represents the occupation
tine of vach module for current image

3 Simulation results

We have tested the smoothing and derivative filters using a
lixed-point implementation for various number of bits and
vilues of the parameter o The results obtained are very
sinlar to those of a Hoating point implementation when
nsiny vilues for a close o one for a number of bits bigger
thare 100 Dealing with vaines of o close to 0.5 and less,
provades a need to imerease the number of bits to 16, The
nortihized mean square error (NMSE) between the Hoat-
g potnl jmipulse response of the derivative filter and its
approvimiated version using a lixed point implementation
with 16 bits s shown i figure 11, for different values of
o varying from 1 wo 1.4 This figure establishes the limits

269

"
("]
w
4
-
w
B

Figure 11: First derivative filter: NMSE between a floating
point and a 16 bits fixed point implementation for values
of a varying from .1 to 1.4

over which it is valid to use a. If « is selected less than 0.2
the impulse response used will deviate from those of the
floating point implementation.

4 Conclusion

In this paper, we examined a possible hardware implemen-
tation of a general recursive filtering structure. It allows
to implement in a very efficient way several classical prob-
lems involved in early computer vision. Its application to
the problem of edge detecvion has also been considered.

References

[1] R.Deriche. Fast Algorithms For Low-Level Vision.
Proceedings 9th International Conference on Patlern
Recognition, 14-17 Nov 1988, Rome.

(2

J.F.Canny. Finding Fdges and Lines in Images. Tech-
nical Report 720, MIT, Artificial Intelligence Labora-
tory, Cambridge, Massachussets, June 1983

3

R.Deriche. Using Canny’s criteria to derive a recur-
sively implemented optimal edge detector. The Inter-
national Journal of Computer Viston, 1(2), May 1987.

