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Abstract

L this article we describe the implementation of a system
It trackimg tokens on a sequence of perspective views and use
the result to compute the 3D motion of a camera and the 3D
stiucture uf the scene (up to a scale factor).

We provide first an overview of the entire process for mea-
oy inage low. We then present a parametric representation
Foa hme segiments which simpliies the nnplementation of track-
tig vilge lines. This is followed by the description of prediction,
it e andd updating of the iage How model. This formalism
ik pussthile o Tast matching algorichm

Pinally we consider the 3D motion estimation using the cz-
fremiitacs wf the segments being tracked. The fact that they do not
contespondd i general to the same physical point, is a major source
obetvor Another one is the presence of incorrect matches. In this
o e eaisting techinigues for motion estunation Ll while onr
tes gy proved particularly robust @ the incorrect matches are
detecred by the motion estimation unit and the information on
Lalo comrespomdences are given (o the token tracker.

I spviments have been carricd out on real image sequences
Caken by aomoving camera, showing that 31 motion and 30D strue-
P catination is last and rehiable

I THE TOKEN TRACKER

Civen a sequence of images, one has to track moving objects in
Hhe seene. Our approach uses tokens based on hue segments cor-
pespomading to the edges extracted from the scene, However, it is
worthwhile to note that other tokens as points of interest (cor-
wers, driple points. ) can be consilered without alfecting deeply
the algonritlon. The edges are obtained through the use of an
sptinial operator previously develuped [1]. An edge linking step
amd o polygonal approximation give the line segments on which
the kg is done. Our tracking approacd is based on a com-
Lanation ol a prediction step and a matching process. Kalman
Whierimg s wsed to help tracking by providing reasonable esti-
sates ol the region where the matching process has Lo seek for

a possibile match between tokens, Correspondence in the search
area a5 dlome through the use of a sunilarity function based on
stiong leatures of the line seginents, When working with a large
sevpmein e ol Trames, it s possible that some objects may appear
ot b= g totally or partially 5 o Kaliman hitering based ap-
Pt allows to hasdle this problem ol occlusion in a effective
woay Eapeniments have been carried out on sy synthetic data
atd o real seenes obtained from o mobile tobot. Some experi-
bl resnlts concerning the real séenes e shown

2  Prediction

Pk vohen (e line segment) is charactenzed by the folluwing
hve pratamieters |

o The vrientation 8 of the line segment

o T'he magnitude of the gradient along the line segment,
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e The length L of the line segment.

e The distance of the origin to the line segment denoted by
the parameter c.

e The distance denoted d, along the line from the perpendic-
ular intersection to the mudpoint of the segment.

A Kalman filter is used to aid tracking by providing reasonable
estimates of the region where the matching process has to seek
for a possille match between tokens.

Kalinan Gltering is a statistical approach to estimate a time-
varying state vector X, from noisy measurcments Z;. Consider
the estimation of X4 fram the e urements up to the instant
t, Kalman fltering is a recursive estimation scheme designed to
match the dynamie system mudel, the statistics of the error be-
tween the model and reality, and the uncertainly associated with
the measurements.

In our approach, a Kalinan hilter is used separately on each of
the five parameters defined aliove to estunate a state vector which
is simply the time varying motion parameters of interest namely
the position, the velocity and the scceleration for the parameters
¢ and d, the angular positien amd s angular velocity for the
parameter ¢ and ouly the position lor (e parameters length L
and magnitude of the gradicut € aasiined 1o be constant,

The Kalman bilicr eqprations used 1t this paper involve dis-
crete time steps: State vector fotalion s used such that X7 =

(2, T¢, Z¢) 15 the position, velocity, and acceleration of the param-
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eter considered ( ¢, .6, L,or () at the M e step. The Kalman
filter can be viewed as consisting of the fullowing steps:

o The model of the system dynamics is:

Xe - @ Xt W

The error of the model Trom reality is given by W, a sero-
mean white Claussian process of covariance @, :

EW,) -0 ; EWWT) - Q

P,y s a matrix which evolves the position x, the velocity
z and the acceleration I from one time sample to another.
It is easy o verily that assuming a motion with constant
acceleration leads Lo the following matrix @+, ¢

1 At ‘-“._I-"
Pay 0 1 At
0o o 1

This is the well known equation of a dropped olijeci for a
Lime dnteeval At

The measurement muodel used is:

4 - X+ V,
where 2y 15 a vedtor ol measurements with an unl:i:ri.u'lnlj-I 'I',
assutned to be a zero-mean Guussian process ol covariaice

I,

KV 0 EVVT) R




When Hy s the wlentity matrix, the measurements corre-
aponu] divectly Lo the state vector.

L our application, the measurement wudel Z; assumes that
the position r (1e the value of ¢, d, #, L or (/) 15 measur-
abibe Tronm the matching process while the velocity z and
e aceeleration * are not, Therefore Z; is the s alar corre-
aposnshing to the position z and Ky is simply thie uncertainty
o £, UChoosing this uncertainty in a manner reflecting vur
a |ll'im'| estimate of the amount ol noise Lo be expﬂ:tml
frum the previous step ( Digitizing cflects, edge detection
aml pulygul.m' upprunilnm.liula] leads to deal with o small
uncertaily for Lhe parsmeters ¢, # and G, and a large un-
certuinty fur the unrelisble parameters L and d due to the
vamdom elfects which break line segnients.

State prediction:
X:;i 1= By I-i.t 1 1

After the measurement at time t-1 has been done, tis tiime
npdate equation predicts the system state at time t from
the estimated values of the system state at time t-1. ln our
application, this equation predicts the value for  at time ¢
tromn the mfurmations available at time t-1.

Covartance prediction for state veclor :
‘"t,-'r—l =&, P -4t I¢Il Qe

Thiz equation gives the statistics relating the estunated
stute vectors Lo the unmeasurable ideal state vectors.

Covariunce prediction for the measurciment vector:

Uepey = Hil'ypy ME M

This equation gives the statistics of the estimated model
measurement. In our apphication, it Jdetermines the search
ured lun the mwatching process.

hoalman Clain:

K, = Ps}*a‘l-”riﬁr W T+ R

This equation indicates how much to weight each new mea-
surement. Note that a small uncertainty Ry ( precise mea-
surement ) causes a large weighting K, and therefore leads
Lo a corrected state estimute determined mainly by the mea-
sutetient. A large uncertainty Ry causes a small weighting
k,.
State corrvection :
Xm = X v Kil2y - Hi Xy, 1)

This equation 15 used to update the state model.
vl iance correction :

P],ﬂ s qu | Kl Hl Plﬂ i

This equation is used to update the statistica coupling the
eatinated state vectors to the unimeasurable eal state vec-
Lo

Covarance correction on the measures @
Uy = R KU

1w is used o apdate the statistics coupling the

the neasurement at

This equs
eatitated model measurement alter
e t s heen done.

I all the vguations the "6 /6" ndicates an estimate at time ¢
alier a measurement at time L has provided wore information.
L o application, « new measurenent s considered each time
a vorvespundence has been done. All the above equations com-
pletely dehue the Kaliman bltering we use in the prediction step.
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3 Matching

For each token of the image model, a selection of the region where
the matching process has to seek for a possilile match hetween
tokens i3 provided through the vse w =molaty luncton. This
function uses the uncertainties provided by the Kalman hliering
step on each estimate. It allows to keep only the tokens within the
search area. A score for each correspondence is then caleulated
n order to disambiguate some possible multiple matches, using
a difference measure. To this uud, we tse a notialized distance
between the tokens, defined as o weighted suim of dilferences be-
tween the respective parameters values. Once a tuken from the
current frame has been matched, we use its paramcters as a new
measure, first Lo update its corresponding state vector and sec-
ond to provide the search area where the matclimg process has
to look fur a possible match between the iage How model and
the nexi frame,

3.1 Dootstrapping step

First, at t - 0 and before the tracking algorithn can operate
thut is in the buotstraping step and each tive that o new token
appears, the matehing algorithm has no idea where to look for the
matching process. ‘I'herefore, a set ol initial position velocity and
acceleration guesses is used to initinlize the tracking process. This
13 done by chovsing somewhat arbitrarily values lor the position
velocity and scceleration bul assiguing large uncertainty so these
tal values will not be weighted heavily as the measurement

in
process continues. lu our application, the pusition is set to be
cunatant wlole the velocity and the svceleration are set Lo gero.

3.2

The sewrh area is determined through a simple set of attribute
tests using the result of the Kalman hltering.  For each token
of the hmage How model, represented by o feature vector of §
components, we wish to know which token might rurrespund to
i This s done through the wse of o siple set of atiribute tests
using the current values of the measure, the eapected value of
the compunent and its uncertainty. This leads v calculate the
M.bialauubis di.-.l..llue, explninl:\l Iu-iuw, For ey Compunents and

Scarch area and correspondences

to declare a touken of the new frame inside a searcly area if all the
distances are less than a fixed thresholl

The correspondence is controlled by the wse ol a normalized
distance based on the attiibutes of each line segment. This dis-
Lance works a¢ a cost function. It is caloulated Tor each possible
mateh and the best score is used to valulate the most consistent.
In selecting a cost Tunction for correspondences, we wanted to
take iuto account the distance betwern the respective parame
ters values and the uncertamiy associited with each parameter.
A good measure i then the 2o callid Mabalanobis distance. It
weights each difference measure hetween the new token and the
estimated token by the uncertamty of the estimated token. It is
delined as follows:

Let each new token, wssued from the matching process, be
represented by a feature vector of N components denoted T,
anid the estimated token represented by T, with an nncertainty
A The Mahalanobis distance is then defined to be

M(T..T) = (T T)"A T T)
The dilference between Ty, and T, is easy o calculute for the
||:I|3t||, nurim gl'.ldieul‘ ¢ amd d components. o order to deal with

the proltem of the ditference between two angles #; amld #;, the
cosine ol the dillerence has been used

4 Experimental Results of the Token
Tracker
Experiments have been carvied out with the proposed token track-

g approa i The tracking algonthm has been applicd to several
seqquences of real inages taken feom a mobile robuot,
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Figure 3. Frame number 3.

The trawking 13 illustrated tough the numbers assigued Lo
cat bl segiment. A cluse look at the results reveals liow some
Tinw segments can appear or disappear. A new label 13 aected as
seolt as d new seginent appears and Lhe process continues without
allecving the tracking algorithin. A label correspouding Lo a good
vorrespondence remains during all the process while false corre-
spetidences are removed after three frames generally. [t should
L ponted out that the algorithm can cope with line segments
wewving with differents motions "P'his illustrates te efficiency of
the used approach,
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5 THE MOTION ESTIMATION

The problens 15 now to use the tokens matched over the sequence
of hmages to compute the 3D motion and 31 stencture ol the
slene

Iu our case the tokens being matched are the extremities of
segments. The fact that they do not correspond in general to the
same physical point is 4 new major source of crror
15 Lhe presence of incorrect matches.

Muny teclinigues have been propused to sulve this problem
with linear I'i,'.'] or iterative [3] algorithms. Unfortunately they
reach their limit very quickly as the noise in the data increases [2,5).

The iterative algorithm we used, which prove to be robust
on real images, is based on a very simple concept
to look, among all the possible motions, the one that mininizes
the diference Letween the measured, actual image and the image
obtained, synthesized using 1 his motion.

Anovther one

the wlea is

6 Problem Definition

In order to compute the rigid motion of the moving camera we
shall consider a nuber of 3D points P omatchied by che token
tracker uver 2 perspoctive views @ Lhe image coordinates |z, y, 1|7
of the 3D points are known while the 3D coordinates are un-
known

We shiall conziddor the system of Figure 4, where the camera
s been desplaced teom position | to position 2 by a nigid motion
of ratation It [ (3x03) rotation mateix) and trapslation t. R oand
tare the unknowns of cur problent.
A
lias 3 components, Lut it is

There are 3 parameters to be computed for the rotation.
translation vector L [y e GATT
well Kinown Ilml‘ frwm a sequence ul |majr1 liull::, wWe Gl Tecuver
the motion up to a scale factor at must.
parameters to be computed for the translation ave just 2

This means that the

7 Iteconstruction & Reprojection

Let Q and Qy be the effective projections of a 31 puint P on
the two mage frames, with w; = 0, Q) — |z, v, I|"" and wy =
02Qy = |ry,y2, 1|7 as shown in Figure 4.

Let us make a simple geometoic remak, helping ourselves with
Figure 4. In this figure we can see that, given Q) in image plane
I, all possible physical points which may have produced Q) are
on the wlinite half-line O, Q.

Given an estimate of rotation and translation, M, and t,, we
can then consider the two infinite hall-lines O, Q1 awd O,Q 5. If
R, and t, are the true rotation and translaoon and the image
wourdinates of the two points Qg awd Q. are exactly known,
0,0, and 0,0, intersect in P.

I general, due to incorrect knowledge ol rotation and trans-
lation and noise on the measured mage pots Q) and Q. the
two lines O, Q) and 0,Q; do not intersect, as shown in Figuie 4.
I this case we have to decide what would Le a gnml eslimate of
P. This can be chosen in many ways:

1. the middle point P of the ntersections of ¢, and
0,Q, with their common perpendicular o) this 15 the re-
construction used in [5] and i the one shown i hgure 4,

. the point P2 that minimize the "er
tivn #) ; this is the reconstruction implhicitly used in |6},

‘or vectors” [:t'c sec-

. the intersection P! of line 0,Q, with the plane {1 dehned
as fullows @ it contains 0,Q; and it is perpendicular to the
plane X passing thruy O} and O and containing O,Qy; in
wrider 1o keep the symmetry of the problem we shall consider

. 3 i i
alo the point P‘l l, defined ina similar way.

Our tests show that the reconstruction plays an important role.

Let P, 1,2,3) ba . .o reconstructed 3D point using one
of the 3 methods. Let Q{(R, ,l.,:l (resp Q'_.[R..,l,] ) Le the
cetion ol P0G the fiest l:resp. Seculld) iulum- piulw.




JlRY)

common perpendiculur

o, i

Fignre 45 Reconstruction using the middle point of the common
'Il‘llll'llllll lll.ll'.

The wlew is todook, among all the possible rotations and vrans-
Lotz the ones that produce the "best™ reconstructed image.
Wi detine as the " hest reconstructed image” the one that min-
e L "error vectors” | q'l (R.,t.)Q |and | QL(R,, £ )Q, |
T all watchied points (ligure 5)
Tl cniterion to o minimize can be written as follows :

CUIR ) Y (1QURHQ: 1 [ QLR Q. [F)
TSR, FCUY (R, Y (1

where O3 (resp. &Y ] refers to the error vectors of the left (resp.
thit) e using the (0 = 1,2, 3) reconstruction method.
Wo bave considered also the Longuet-Higgins [4] eriterion ;

CHmY < T (wa (EARwg) ()
all it bl
Jroanils

Criteria Y CU wnd CYT have been derived and minimized
wong a steepest deascent method and Kalman filtering, while eri-
terion 1 s been minimized using a finite difference technigue.

8 Minimization of the Criterion C*

li onder o0 mininiize enterion C'1 we have o reconstruct the
gt P fur every matched point P This is the solution of
4 mmnmization problem, which can be written in the following
v-puwuln'nl Ways o

Minimization of 4 variables subject to nonlinear
constraint
The gt PP 05 the one that winimige the magnitude of the
il Vircliols
wy | Awy "QlQ, and wa | Aw,"" Q.Q.

w i

Awy  |Ar, Ay, 1T and Awg — [dsy, A, 1"
Thee critermm to be ominimnzed s Chen the fullowing :

C".JI:KJ.",dy.,QJ:_-,Ay_-} A\Hl‘ ] 6\\1"2."

wider the constriant ¢

(wog | Awg) (LA R{wy | Awy)) =0

Minimization of 3 variables without constrainl
Let O P C X |z, y,2|". We lave

; ¢ X 1T
Awyp [ 40]T and Awg |:=t§:::::{‘:'|

The previous criterion can be written i the Tollowing nuanner :

]

Ciylziviz) = (.t. :)- | (y. :)- |
wa)‘ (RX), \*
(“ (RX). '(“ {nxu)
Minimization of 2 variables subject to nonlinear
constraint

It can be shown that the previous criterion is equivalent to the
fulluwing : ;
Craldz, du) = Awy”

under the constraint :

B ) (RAw,), *“A‘"ﬂ.)’
{AJI)‘ t [ﬁyl}: - (z? [Raw’]' ) t (!l"z {RA'W'I]I:

9 Choice of the segments
There are two major sources of errors in using points as tokens
tu compute the motion:

® noise in the detection of the point,
e incorrect matches.

lu using segments we have to add another source of error:

o Lhe extremities of matched segments do not correspond, in
general, to the same physical 31 points.

'|' v\ |
LI

ﬂ g
hoh J | ||l' “ __;'l_" i

Figure 5: Reprojection of frame 2 of the reconstructed scene uiing
the initial estimate for the mution (translation- (1,0,0), axis of
rotation=(0,0.1,0))

LT

In order tu reduce the elfect of the latter we procecd as Follows :
te of the muo-

we reconstruct the scene using the iunitial es
tion (in our case Lanslation 10,0,0]7 amd wnis Jf rotation
— 0,0.0,01") ; we then reproject the scene on the secomd -
age plane gl we aelect anly the matched segments that verily
the Tollowing comdit, s ¢

1 they dilfer, i length, by not more than 5%,

2. they diller, in orientation, by not more than 5 degrees,
The mraimum ol the coverion is then computed lor the selected
segmients, giving o new estinnate for the rotation and the transla-

tion. This estimate is nsed on all the original segments to make
a new selection with the additional comditnoms

3. the distance of the exteemitivs of the segnents mnst be less
than 3 piscls,
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Fagnee 70 Heprojection on frame 2 of the reconstructed scene

Wi the computed motion on the selected segments after the
b ek,

I they diller, in orientation, by not more than 2 degrees.

T he s of the criterion is computed on these segments and
pves the final estinate of the motion. This estimate is then nsed
tevemve the segiments that do not veril'y condition 3, which are
com=ilered as Lalse correspondences.

10 Experimental Results of the Mo-

tion Estimation

i the test that we lave pedformed on g uumber of sequences
ol veal iages we can make the fullowing two considerations :

werin S and CMY e unreliable,

wenen S gives better results than 20 but its imple-
mentabion is slower © every reconstructed point has to be
computed as solution of o minimization problem and the

wiin of CV s Fonmd using buite ditference methods,

sitiee we couhl ot dertve the criterion

Il vesults show on ligure 5 o 8 were computed using criterion
O whide the recomsteuction gl omented for the reprojection
Wi \-,.,

Vi iedi ation ol the guality of the results s shown i lig-
L}

a1 |-|u}('l'fﬂ| SCee §

e we Caimol see the diference between the reconstructed

wl the original seginents.

Vcther andication of quality of the results is the computed
ainele ol rotation & from frame 1w 3 the computed angle was

ot and 2 14 whale thie robot moved of about 2 degrees.
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Figure 8: Reprojection on frame 2 of the reconstructed scene
using the inal computed motion (2 iterations) on all the segments
of the scene.

Similar results were obtained on all the other sequences used
fur test.

The cpu time on a Sun workstation was of about 3 seconds
fur 100 selected segments.

11 CONCLUSION

We liave proposed a techinique for recovering the 3D motion and
31 structure (up to a scale factor) of a scene which presents the
following caracteristics :

o reliable : the reconstructed aml reprojected scene cannot
be differentiated from the original images,

o [ast @ the overall process of trucking, motion and structure
computation Likes i few secomd- on o Sun workstation,

o of simple material iwplementation : unly a single cam-
era and hence one calibiation is required aml no epipolar
geometry 15 needed,

These caracteristics render the tedinigque very attractive and
liave been illustrated by several experiments that have been car-
ried out on noigy syuthetic data and real scenes obtained from a
mobile robot.
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