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ABSTRACT 
Although the 3D orientations of edges and surfaces are theoreti- 
cally sufficient for reconstructing the 3D object shape, this does 
not mean that the 3D object shape can actually be reconstructed: 
Inconsistency may result if image data contain emrs .  We pro- 
pose a scheme of optimization to construct a consistent object 
shape from inconsistent data. Our optimization is achieved by 
solving a set of linear equations. This technique is first applied (a) (b) (c ) 

to the- ~roblem of shape from motion and then 10 Ule 3D Fig. 1 2ya sketch, (a) The surface gradient is demely recovery based On the rectangulariv hypothesis and the para'- estimated. @) The surface gradient is estimated for each planar 
lelisrn hypothesis. patch. (c) The 3D orientation is estimated for each edge. 

1. Constraints on 2%D Sketches 

In the past, various 3D shape recovery techniques called 
shape from ... have been proposed (shape from motion, shape 
from shading, shape from texture, etc.). Now, we must ask the 
following question: Do these techniques really enable us to 
recover the 3D object shape? The shape from ... paradigms usu- 
ally present us with object images equipped with the following 
types of 3D information: 

(i) The surface gradient (p, q), or equivalently the unit sur- 
face normal n ,  is denrely estimated (Fig. l(a)). 

(ii) The ngion wrresponding to the object surface is seg- 
mented into planar patches, and the surface gradient (p, 
q), or equivalently the unit surface normal n , is estimated 
for each patch (Fig. lo) ) .  

(iii) The region wrresponding to the object surface is seg- 
mented into planar patches, and 3D edge orientations are 
estimated (Fig. I(c)). 

We call an image equipped with such 3D information a 2!@ 
~ k e t c h . ~  

We consider cases (ii) and (iii), and assume that the object 
surface is approximated by a polyhedron. We say that a vertex 
is incident to a face if the vertex is on the boundary of the face. 
Let V=(Vl, ..., V, ) be the set of its vertices, and F=(FI ,  ..., F, ) 
be the set of its faces. The incidence structure is specified by a 
set R of incidence pairs (Fa. Vi) meaning that vertex Vi is 
incident to face F,. Let 1 be the number of such incident pairs. 

Let (Xi, Yi, Zi) be the scene coordinates of vertex Vi, i = l ,  ..., 
n ,  and let Z=p,X+q,Y+r, be the equation of face Fa, a=l, ..., 
m. The pair (pa, q d  indicates its surface gradient. Let us call 
pa, q,, r, the swfaceparameters of face Fa. The incidence pair 
(Fa. Vi) states that vertex Vi is incident to face Fa: 

Fig. 2 Perspective projection. 

cides with the center of the lens. Then, we can think of the XY - 
plane as the image plane (Fig. 2). 

It is easy to see that the image coordinates (xi, yi) of vertex 
Vi are related to its scene coordinates (Xi, Yi , Zi) by the projec- 
tion equations 

Now, we introduce a new quantity 

for each vertex Vi and call it the reduced depth of the vertex. 
Then, we can express the reduced depth zi of vertex V, in terms 
of its image coordinates (xi, yi): 

We define new parameters 

p =- fro 
(r 

fqa R =- fpa Q =- 
f + r a 9  ,-f+r,' a-f+ra'  (1.5) 

In this paper, we use a coordinate system fixed to the camera and call these the reduced surface parameters. In terms of the 
in such a way that the Z-axis coincides with the optical axis and reduced surface Parameters Pa; Q,, R,, the reduced depth zi is 
point (0, 0. -f) (which we henceforth call the viewpoint) coin- written as 
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Since the image coordinates (xi, yi) of vertex Vi are known, 
the 3D position of vertex Vi is determined if its reduced depth zi 
is known. Consequently, the reduced depths zi, i=l,  ..., n ,  can 
be taken as unknowns for the 3D vertex positions instead of the 
original depths Zi, i=l. ..., n. Similarly, the reduced surface 
parameters Pa, Q,, R,, -1, .... m ,  can serve as unknowns for 
the surface shape instead of the original surface parameters pa, 
q,, r,, el. .... m .  Thus, we obtain 1 (= the number of incidence 
pairs) equations 

2. Optimization of a 2KD Sketch 

2.1 Surface Gradients Estimated 
Suppose we are given a 2KD sketch. Let R=((F,, Vi)) be its 
incidence structure. Let (Fa. Qd be the estimate of the surface 
gradient of face Fa. Let (pa, qa) be the true surface gradient of 
face F,. Here, we seek, from among the infinitely many 
consistent polyhedron solutions which are exactly projected 
onto the observed image, the one whose surface gradients art  
the closest to the given estimates on the average (Fig. 3). 
Specifically, let us consider the least square method to minimize 

where W, is the weight for face Fa. If eqns (1.7) are substituted, 
eqn (2.1) is rewrinen in terms of the reduced surface parameters 
as follows. 

In order to make our analysis easy, we replace ra in the 
above equation by its estimate i.,, assuming that it is somehow 
available. Then, we put 

Now, L is a constant assigned to face Fa  whose value is yet to 
be determined. 

The problem now reduces to the minimization of J under the 
constraints (1.7) for all incidence pairs (Fa, Vi)eR. As long as 
we use surface gradient cues, we must give the depth Z ,  or 
equivalently the reduced depth z, to one vertex. Let that vertex 
be V.. Since J is quadratic and the constraints (1.7) are linear in 
the unknowns, the minimization is achieved by solving a set of 
linear equations. If we introduce Lagrangian multipliers &, to 
all the incidence pairs (Fa. Vi)eR, the final result becomes as 
follows: 

Fig. 3 Optimization. From among infinitely many wnsistent 
polyhedron solutions which are exactly projected onto the 
observed image, the one whose surface gradients are the closest 
to the given estimates on the average is chosen. 

2.2 Edge Orientations Estimated 
Next, consider case (iii) - the 3D edge orientations estimated. 
Let Ea=(el, ..., e ~ ~ )  be the set of edges constituting the 
boundary of face Fa, and let 2k=(?k(1), ?,,), 2,,)) be the unit 
vector indicating the estimated 3D orientation of edge Pk. If 
(pa,  qa) is the surface gradient of face Fa, the unit surface nor- 
mal n,=(nNl), nm), nN,) to face Fa is given by 

The vectors Zk for ZkcE, are supposed to be all orthogonal to 
n,, but this is not necessarily guaranteed in the presence of 
noise. Hence, it is reasonable to estimate the surface normal n, 
by the least square method which minimizes 

However, we need not do this minimization for each face 
separately. The surface normals of all the faces are estimated by 
minimizing 

where W, is the weight for face Fa. Following the procedure 
shown earlier, we finally obtain the following result. 

xiPa+yi Qa+Ra-zi=O, (Fa,Vi)€R (2.12) 

where 

Aij= Pk(i,Zkti). i j=1,2.3. 
* .€E.  

(2.17) 

3. Optimization for Shape from Motion 

Suppose we are given a sequence of images of a polyhedron 
moving in a scene. Let us assume that the point-to-point 
correspondence has already been detected. Consider a face 
which has four or more comers. If the image velocities arc 
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Fig. 4 Two ob~ec t  1rn:lgcs. 

Fig. 5 The 3D shape reconstructed from Fig. 4: (a) The top 
view. (b) The side view. 

observed at at least four vertices, we can compute the rotation 
velocity (ol, y, w) and the surface gradient (p, q )  of this face 
by the analytical formula of Kanatani3. Thus, we can estimate 
the surface gradient (p , q )  for the faces which have four or more 
comers. Then, the optimization technique is applied to the 
resulting 2%D sketch. 

Example 1. Consider the two images of Fig. 4. Regarding the 
displacements as instantaneous velocities, and applying the pro- 
cedure described above, the 3D shape shown in Fig. 5 is 
obtained. Fig. 5(a) shows the top view (orthographic projection 
onto the YZ-plane), while Fig. 5 0 )  shows the side view (ortho- 
graphic projection onto the ZX -plane). 

4. Optimization of Rectangularity Heuristics 

If one comer is known to be rectangular and has three visi- 
ble edges, we can compute the 3D orientations of the three 
edges12"a6 Here, we use the formulation of Kanatani4. Each 
edge orientation indicates the surface normal to the face defined 
by the other two edges. Hence, we can determine the surface 
gradient of the three faces. Then, the optimization technique is 
applied to the resulting a 2%D sketch. 

Thus, the remaining question is how to find rectangular 
corners. Our algorithm is based on the following two con- 
siderations. 

Rectangularity test. Comer images which cannot be projec- 
tions of rectangular comers are removed? 

Compatibility test. Choose two comers which share at least 
one face, and compute the 3D edge orientations and the surface 
gradients, assuming that both are rectangular comers. If this 
assumption is correct, the computation must predict an identical 

Fig. 6 A polyhedron Image. 

Fig. 7 One 3D shape reconstructed from Fig. 6: (a) The top 
view. (b) The side view. 

Fig. 8 Another 3D shape reconstructed from Fig. 6: (a) The top 
view. (b) The side view. 

3D orientation for the connecting edge (if the two comers are 
connected) and identical surface gradients for the common faces 
(within some fixed tolerance). 

Maximal compatible sets. Form maximal compatible sets of 
comers in such a way that as many comers are included as pos- 
sible unless incompatible pairs arise among them. Assuming 
that the comers belonging to each set are all rectangular, we end 
up with as many 2%D sketches as these maximal compatible 
sets. 

Example 2. Fig. 6 is a real image of a polyhedron. The rec- 
tangularity test cannot reject any vertices as definitely non- 
rectangular. The compatibility test tells us that these vertices are 
split into two compatible groups. Hence, we obtain two solu- 
tions. Applying the optimization technique, we can reconstruct 
the two 3D shapes shown in Figs. 7 and 8. In both of them, (a) 
shows the top view (orthographic projection onto the YZ-plane) 
while (b) shows the side view (orthographic projection onto the 
ZX -plane). 

6. Optimization of Parallelism Heuristics 

If two lines in the image are interpreted to be projections of 
parallel lines in the scene, they define a vanishing point on the 
image plane, which determines the 3D orientation of these lines. 
Hence, if we can futd a set of edges which are parallel in the 
scene, their 3D orientation is computed from their vanishing 



IAPR Workshop on CV - Speaal Hardware and Industrial Applications OCT.12-14, 1988. Tokyo 

Fig. 9 Concurrency test: Parallel edges in the scene are pro- 
jected onto concurrent lines on the image plane (within some 
tolerance). Parallelogram test: If edges e l ,  el  are parallel, 
edges eg, e4 cannot be parallel in (a) but can be parallel in (b). 

Fig. 11 A polyhedron image. 

Fig. 10 Collinearity test: The vanishing points of parallel edges 'LA' v 
belonging to the same face must be collinear (within some toler- 
ance). Vanishing point heuristic: Two edges are more likely to (a) (b) 
be parallel in the scene if their intersection is farther away from 
the image origin 0. Fig. 12 The 3D shape reconstructed from Fig. 11: (a) The top 

view. (b) The side view. 

points, and we can obtain a 2%D sketch with estimated 3D edge 
orientations. Then, we apply the optimization technique. 

Thus, it remains to construct an algorithm for finding paral- 
lel edges. We apply the following pmdures:" 

Concurrency test. A set of edges concurrent on the image 
plane are judged to be parallel in the scene (within some toler- 
ance) (Fig. 9). 

Common incidence heuristic. The concurrency test is inca- 
pable of detecting a pair of parallel edges if no other edges are 
parallel to them. It is reasonable to check only those pairs 
which share a common face but no common vertex, because it 
is highly unlikely that two edges belonging to different faces are 
parallel, yet no other edges are parallel to them. 

Parallelogram test. If two pairs of parallel lines lying on the 
same plane are projected onto half-lines starting from their 
respective vanishing points, they must intersect with each other 
at exactly four points on the image plane (Fig. 9). 

Collinearity test. If three or more sets of parallel lines belong 
to the same face, their vanishing points must be collinear 
(within some tolerance) (Fig. 10). 

Vanishing point heuristic. Those edge pairs which have 
passed these two tests are assumed to be parallel in the scene. 
However, if one edge appears in different pairs of parallel 
edges, we choose the pair whose intersection is located farthest 
away from the image origin (Fig. 10). 

Example 3. Fig. 11 is a real image of a polyhedron. Applying 
the concurrency test, we detect two sets of parallel edges. From 
among the remaining edges, the pairs which share common 
faces but no common vertices are the next candidates for paral- 
lel pairs. All of these pairs pass both the parallelogrem test and 
the collinearity test. Since some edges belong to multiple pairs, 
we invoke the vanishing point heuristic. Applying the optimi- 
zation technique, we can recover the 3D shape up to a single 
scale factor, and obtain the 3D shape shown in Fig. 12. Fig. 

12(a) shows the top view (orthographic projection onto the YZ- 
plane), while Fig. 12(b) shows the side view (orthographic pro- 
jection onto the ZY-plane). 
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