IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

THE EXTENSION OF THE AHO-CORASICK ALGORITHM TO MULTIPLE RECTANGULAR
PATTERNS OF DIFFERENT SIZES AND N-DIMENSIONAL PATTERNS AND TEXT

Rui Feng ZHU

Masayuki NAKAJIMA

Takeshi AGUI

Imaging Science and Engineering Laboratory,

Tokyo Institute of Technology.
4259 Nagatsuta, Midori-ku, Yokohama 227, JAPAN

Abstract

The pattern matching problem is to find
all occurrences of a pattern in a text, or
to decide that no such pattern exists in the
text. An efficient algorithm was proposed by
Boyer and Moore [1]. Unlike the Knuth-
Morris-Pratt algorithm [2] and the 'brute-
force' algorithm, the Boyer-Moore algorithm
compares the pattern with the text from the
right end of the pattern. The authors have
presented a method [3] to improve the
avebrage performance of the Boyer-Moore
algorithm. As the length of pattern gets
longer, it decreases the number of
characters inspected and the running time
rapidly. Another efficient algorithm for
matching multiple patterns was proposed by
Aho and Corasick [4]. We call it AC
In these methods, both the
pattern and text are one-dimensional arrays.

algorithm.

A natural extension of the pattern matching
problem is the case in which both the
patterns and text are represented in
computer in the form of rectangular arrays.
In the present paper, we first show that
multiple rectangular pattern arrays of
various sizes can be efficiently recognized
by extending the idea proposed in the AC
algorithm, then demonstrate such method
permits extension to arrays of arbitrarily
many dimensions. Both the running time and
preprocessing time of our algorithms are
linear to the size of the text.

1. Introduction
The pattern matching problem is to find

185

the first or all occurrences of a pattemn in
a text, or to decide that no such pattern
exists in the text. The techniques for
finding the first occurrence of the pattern
can be easily modified to find all the
occurrences of the pattern. we will
concentrate on finding the first occurrence
of the pattern. The authors have presented a
method ([3]

performance of the Boyer-Moore algorithm.

to improve the average

The basic idea is to utilize two characters
for a precomputed table instead of one
character. Computer experiments have shown
that as the length of pattern gets longer,
it decreases the number of characters
inspected and the running time sharply. An
efficient algorithm for matching multiple
patterns was proposed by Aho and Corasick
[4]. We call it AC algorithm. Let K =| PT;
|i=1,2, ... k| be a finite set of keywords
PT; and text T an arbitrary string. The
theme is to find all keywords included in
text T. A natural extension of the pattern
matching problem is the case in which both
the patterns and text are rectangular
arrays, that is K ={ PT.[P; ,,P: 5]
121250kt G, where Pi|1 i;-t;;1coi$;n
length and Pi,2 is the ro; length.

2. The AC algorithm

The AC algorithm first makes a finite
state pattern matching machine from the set
of keywords K, then apply the text T as
input to the machine. We discribe the
behavior of the pattern matching machine by

three functions: a goto function g, a

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

failure function f, and a output function p.
The pattern matching machine consists of a
set of states, and represent each state by a
number. The machine processes the text T by
reading the characters in text T, making
state transitions and occasionally emitting
output. The goto function g maps a pair
consisting of a state and an input character
into a state or the message fail. The
failure function f maps a state into a
state. The failure function is referred
whenever the goto function reports fail. We
also assign some states as output states
which means that a set of keywords has been
found. The details of algorithms for
construction the three functions are given
in [4].

3. The Algorithm

Based on the AC algorithm, we first
present an efficient algorithm to find all
occurrences of multiple patterns of various
sizes in the text T, then show such idea
permits extension to patterns of any
dimensions. The general scheme of the
algorithm is composed of two distinct steps,
a row-matching step and a column-matching
step. The purpose of the row-matching step
is to determine which row of the patterns
matches a terminal substring of text T. We
realize this by using the AC algorithm in
which each row of patterns is considered to
be a keyword. We assume that P, 2Py 52P3 53
ipk,z' and make a partition according to
the following condition:

PT; and PTy,q in a same set

iff Py 5=Pjq . (i=1,2,0k-1) (1)

the size of such a partition is assumed to
be k1(k1<k). We define an array PAR[1..k] of
1..k1 to partition patterns according to
their row length. The component rows of
pattems within the same partition are all
of the same length. It follows that no two
component rows may be proper suffixes in a

186

same partition. Therefore, for each position
in a row of the text, at most one distinct
row of given length of patterns may match
with text T in that location.

We identify the distinct rows of pattemns
and assign each a unique index. Let the
distinct rows be Xq,X3, ... xq Thus the
subscript of pattern PT; can be represented
by the following column in l 1,2, . g }

(p(i,1),p(1,2), - p(i,P; 1)F in (2)

So, we can represent the pattern PT; in
the following form:

PT; = X p(i,1)

X b(i,2)

X pli,Pi,1) (3)
We put such a unique index in output
function p.
Example 1. k=5, k1=4
PAR index
PTq:
aabba=x1 1 p(1,1)=1
aaaab=X, 1 p(1,2)=2
P'I‘Z:
a a a=X; 2 p(2,1)=3
b b b=X, 2 p(2,2)=4
a a a=X3 2 p(2,3)=3
PI‘3:
a a a=X3 2 p(3,1)=3
PTy:
a b=Xg 3 p(4,1)=5
a a=Xg 3 p(4,2)=6
PTg:
a=Xq 4 p(5,1)=7

Also we add to the output function p
another value to retain the partition value
of the row found. The goto function g1,
failure function f1, output function p1 for

example 1 are shown in Fig.l.

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT 12-14, 1988, Tokyo

b

@?@aeﬁa@:@}:@

T
G

(a) goto function gl

i1 2 3 456 7 8 9101112
f10 1 12101 2 6 3 09 109
(b) failure function f1
state (output11,cutputl2)

1 [(7,4)]
2 [(6,3),(7,4)]
3 [(5,3)]
5 [1,1),(7,4)]
6 ((7,4),(6,3),(3,2)]
7 ((7,4),(6,3),(3,2))
8 [(2,1),(5,3)]
M [(4,2)]
12 [(5,3)]
(c) output function pl
Fig.1

After finding that the i-th row of a
pattern occurs in a given place in the text,
we must examine whether or not the rows from
the 1st row until the i-1th row of the
pattern occur immediately above the i-th
row. This can be done by making another
pattern matching machine in the column-
matching step.

We construct another pattern matching
machine M2 with Goto function g2, failure
function £2, and output function p2. The
input keywords are:

KK = | p(i,1) p(i,2) ... p(i,Pj 1)
r
| i=1,2,:0/k) (4)
The goto function g2, failure function £2,
and output function p2 for example 1 are
shown in Fig.2.

187

13,57 (00}

7

(a)goto function g2

i f2(i) state output2
2 Py

1 0

2 0 3 PI‘3

3 0

5 3

6 0 7 PT,

7 0

8 0 8 PTg

(b)failure (c)output function

function £2 p2

Fig.2

We assume string XqX,...X, represents
state s of pattern matching machine M2 if
the shortest path in the goto function of M2
from the start state to state s spells out
X1X2...X,;. Also We maintain a rectangular
array al1..k1,1..N2] of states, such that
for each position (row,col) the fact that
alk,col]l=s means just that X1Xo. X of
pattern PTy with partition value k have been
discovered to match the text in positions as
shown in the following:

T[row-u+l ,ool—Pi’zﬂ J...T[row-u+1,col] X4
T{row-u+2,col-P; 5+1]...T[row-u+2, col] X,
r
Tl(row,col-Py >+1] .. Tlrow,col] %
If we have p2(s)#empty that means a
complete pattern PT; has been found as a

subarray of the text at (row,col). The

IAPR Workshop on CV - Special Hardware and industrial Applications OCT.12-14, 1988, Tokyo

number of pl1(1,statel) might be more than 1,
but always less than k1. For it to work
correctly at the start of the algorithm, we
initialize a[t,col]=0 1<t<k1, and 1<col<N2,
that is each element of array a begins from
start state. The Algorithm is shown below:
Algorithm,
Input. A text T[1..N1,1..N2] and pattern
matching machines M1 and M2 with Goto
function g1 and g2, failure function f1 and
f2, output function pl and p2.
Output. locations(row,col) at which PTy
occurs in text T.
Method.
begin
statel:=0;
for row:=1 until N1 do
for col:=1 until N2 do
begin
while gl(statel,T[row,col])=fail
do statel:=f1(statel);
statel:=g1 (statel,T[row,col]);
if p1(1,statel)fempty
then for all p1(1,statel)fempty do
begin
state2:=a(pl(2,statel),col);
c:=pl(1,statel);
while g2(state2,c)=fail do
state2:=f2(state2);
state2:=g2(state2,c);
a(pl1(2,state),col):=state2;
if p2(state2)fempty then
begin
print (row,col)
print (p2(state2))
end

end
end.

The running time depends on how often the
rows of the patterns occur in the text. In
average case it is linear to the size of
text T.

4. The extension of our algorithm,

If P1 ’2=92'2 ™ =P](,2’ and P1t1=?2'1= e
=Pk,1' we consider the set of patterns as a

188

three dimensional array, PT(P1,P2,P3], and
also text T is a three dimensional array,
T[N1,N2,N3]. The theme becomes to find all
occurrences of the pattern PT as embedded
subarraies in the text T. The algorithm is
composed of three matching steps. Both the
time and space requirments of the algorithm
are linear to the size of text T. Naturelly,
we can also extend our algorithm to higher

dimensions.

5.Conclusion

In the paper, we have demonstrated that
multiple rectangular pattern arrays of
various sizes and N-dimensional arrays can
be efficiently recognized by using the
method proposed in AC algorithm [4]. The
algorithms described here have the following
noteworthy properties:

(1) Both its running time and space
requirement is linearly proportional to the
size of text, which is clearly optimal since
the text have to be read and this needs time
and space equal to the size of the text.

(2) its on-line nature, that is the input
is scanned only once, and after scanning the
characters at any position of the input,

before scanning further, it is possible to
answer yes or no to whether any of the

patterns match at that position.

References:

[1] R. S. Boyer, and J. S. Moore, A Fast
String Matching Algorithm, Comm. ACM 20(10),
pp.762-772 (1977).

[2] D. E. Knuth, J. H. Morris and V. R.
Pratt, Fast Pattern Matching in Strings,
SIAM J. Comput. 6(2), pp.323-350, (1977).

[3] R. Zhu. and T. Takaoka, On Improving the
Average Case of the Boyer-Moore String
Matching Algorithm, Journal of Information
Processing, Japan, 10(3), (1987).

[4] A.V.Aho and M.J.Corasick, Efficient
string matching: An aid to bibliographic
search, Comm. ACM 18(6) pp.333-340 (1975),

