
IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988. Tokyo

THE EXTENSION OF THE AHO-CORASICK ALGORITHM TO MULTIPLE RECTANGULAR

PATTERNS OF DIFFERENT SIZES AND N-DIMENSIONAL PATTERNS AND TEXT

Rui Feng Z H U Masayuki N A K A J I M A Takesh i A G U I

Imaging S c i e n c e and Engineer ing Labora to ry ,

Tokyo I n s t i t u t e of Technology.

4259 N a g a t s u t a , Midori -ku, Yokohama 227, JAPAN

Abstract

The p a t t e r n matching problem i s t o f i n d

a l l occurrences of a p a t t e r n i n a t e x t , o r

t o decide tha t no such pattern exis ts i n the

text. An e f f i c ien t algorithm was proposed by

Boyer and Moore [1 I. Unlike t h e Knuth-

Morris-Pratt a lgor i thm [2 I and the 'brute-

force' algorithm, the Boyer-Moore algorithm

compares the pattern with the t ex t from the

r i g h t end of t h e pat tern . The au thors have

p r e s e n t e d a method [31 t o improve t h e

avebrage performance of t h e Boyer-Moore

algorithm. A s t h e l eng th of p a t t e r n g e t s

l o n g e r , i t d e c r e a s e s t h e number of

charac te r s inspected and t h e running t i m e

rapidly. Another e f f i c i e n t a lgor i thm f o r

matching multiple patterns was proposed by

Aho and Coras ick [41. We c a l l it AC

a l g o r i t h m . I n t h e s e methods, b o t h t h e

pattern and text a re one-dimensional arrays.

A natural extensim of the pattern matching

problem is t h e c a s e i n which b o t h t h e

p a t t e r n s and t e x t a r e r e p r e s e n t e d i n

computer in the form of rectangular arrays.

In t h e p resen t paper, we f i r s t show t h a t

mul t ip le rec tangu la r p a t t e r n a r r a y s of

various s izes can be eff ic ient ly recognized

by extending t h e idea proposed i n t h e AC

a lgor i thm, then demonstrate such method

permits extension t o a r r a y s of a r b i t r a r i l y

many dimensions. Both t h e running t ime and

preprocessing t ime of our a lgor i thms a r e

l inear t o the s i ze of the text.

1. Intmducticn

The p a t t e r n matching problem is t o f i n d

the f i r s t o r a l l occurrences of a pattern i n

a t e x t , o r t o decide t h a t no such p a t t e r n

e x i s t s i n t h e text . The techniques f o r

finding the f i r s t occurrence of the pattern

can be e a s i l y modified t o f ind a l l t h e

o c c u r r e n c e s of t h e p a t t e r n . w e w i l l

concentrate on finding the f i r s t occurrence

of the pattern. The authors have presented a

method [3] t o i m p r o v e t h e a v e r a g e

performance of t h e Boyer-Moore algorithm.

The basic idea is t o u t i l i z e two characters

f o r a precomputed t a b l e ins tead of one

character . Computer experiments have shown

t h a t a s t h e length of p a t t e r n g e t s longer,

it d e c r e a s e s t h e number of c h a r a c t e r s

inspected and the running t i m e sharply. An

e f f i c i e n t a lgor i thm f o r matching mul t ip le

p a t t e r n s was proposed by Aho and Corasick

[4 I. W e c a l l it AC algorithm. Let K = { PTi

li=1,2, ... k 1 be a f i n i t e set of keywords

PTi and t e x t T an a r b i t r a r y s t r i n g . The

theme i s t o f i n d a l l keywords included i n

t e x t T. A n a t u r a l extension of t h e p a t t e r n

matching problem i s t h e case i n which both

t h e p a t t e r n s and t e x t a r e r e c t a n g u l a r

a r r a y s , t h a t is K = { PTi[Pirl , P i r Z]

/ i=1,2,. ..k , where Pill i s t h e column

length and Pi12 is the row length.

2. The AC algorithm

The AC a lgor i thm f i r s t makes a f i n i t e

state pattern matching machine from the s e t

of keywords K, then apply t h e t e x t T a s

i n p u t t o t h e machine. W e d i s c r i b e t h e

behavior of the pattern matching machine by

t h r e e f u n c t i o n s : a g o t o f u n c t i o n g , a

IAPR Workshop 017 CV - Spedal Harchrare and Industrial Applications OCT.12-14. 1988. Tokyo

failure function f, and a output function p.

The pattern matching machine consists of a

set of states, and represent each state by a

number. The machine processes the text T by

reading the characters in text T, making

state transitions and occasionally emitting

output. The goto function g maps a pair

consisting of a state and an input character

into a state or the message fail. The

failure function f maps a state into a

state. The failure function is referred

whenever the goto function reports fail. We

also assign some states as output states

which means that a set of keywords has been

found. The details of algorithms for

construction the three functions are given

in [41.

3. Ihe A l g o n i t h m

Based on the AC algorithm, we first

present an efficient algorithm to find all

occurrences of multiple patterns of various

sizes in the text T, then show such idea

permits extension to patterns of any

dimensions. The general scheme of the

algorithm is composed of two distinct steps,

a row-matching stepand a column-matching

step. The purpose of the row-matching step

is to determine which row of the patterns

matches, a terminal substring of text T. We

realize this by using the AC algorithm in

which each row of patterns is considered to

be a keyword. We assume that P1 ,2~P2,21P3,2~

... 1%,2r and make a partition according to

the following condition:

mi and PTi+l in a same set
iff Pi,2=Pi+1 ,2. (i=1 ,2 ,... k-1) (1)

the size of such a partition is assumed to

be kl (kllk). We define an array PAR[l ..kl of

1 ..kl to partition patterns according to

their row length. The component rows of

patterns within the same partition are all

of the same length. It follows that no two

component rows may be proper suffixes in a

same partition. Therefore, for each position

in a row of the text, at most one distinct

row of given length of patterns may match

with text T in that location.

We identify the distinct rows of patterns

and assign each a unique index. Let the

distinct rows be XI ,XZI ... Xq. Thus the

subscript of pattern FTi can be represented

by the following column in (1,2, ... q 1.

So, we can represent the pattern PTi in

the following form:

We put such a unique index in output

function p.

Example 1. k=5, kl=4

PAR

PT1 :

aabba=X1 1

a a a a b=X2 1

FT2 :

a a a=X3 2

b b b=X4 2

a a a=X3 2

PT3 :

a a a=X3 2

FT4 :

a b=X5 3

a a=% 3

PT5 :

a=X7 4

index

Also we add to the output function p

another value to retain the partitia value

of the row found. The goto function gl ,
failure function £1, mtput function pl for

example 1 are shown in Fig.1.

IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

I----@:->@:->@
(a) goto function gl

i 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

£ 1 0 1 1 2 1 0 1 2 6 3 0 9 1 0 9

(b) f a i l u r e function £1

s t a t e (output1 1 ,output1 2)

1 [(7,4) 1
2 [(6 ,3) , (7 ,4)1

3 [(5,3) 1
5 [(I) r (7 1 4) l

6 [(7 ,4) , (6 ,3) , (3 ,2) I
7 [(7 ,4) , (6 ,3) , (3 ,2) 1
8 [(2,1),(5,3)1

11 [(4 ,2) 1
12 [(5,3) 1

(c) cutput function pl

Fig. 1

A f t e r f i n d i n g t h a t t h e i - t h row of a

pa t te rn occurs i n a given place i n t h e text,

w e must examine whether o r not t he rows from

t h e 1 s t row u n t i l t h e i - l t h row of t h e

p a t t e r n occu r immedia te ly above t h e i - t h

row. Th i s can be done by making ano the r

p a t t e r n matching machine i n t h e column-

matching step.

W e c o n s t r u c t a n o t h e r p a t t e r n matching

machine M2 w i t h Goto f u n c t i o n 92, f a i l u r e

f u n c t i o n £2, and o u t p u t f u n c t i o n p2. The

input keywords are:

The goto function 92, f a i l u r e function £2,

and o u t p u t f u n c t i o n p2 f o r example 1 a r e

shown i n Fig.2.

I----@
(a)goto function 92

i f 2 (i) state output2

PT1
1 0

2 0 PT3

3 0

4 0 5 PT2,m3

5 3

6 0 PT4

7 0

8 0

(b) f a i l u re (c)cutput f u n c t i o n

function £2 P2

Fig. 2

We as sume s t r i n g X I X 2...X, r e p r e s e n t s

s t a t e s of p a t t e r n matching machine M2 i f

t h e sho r t e s t path i n t he goto function of M2

from t h e s t a r t s t a t e t o s t a t e s s p e l l s o u t

X I X Z...X,,. Also W e ma in t a in a r e c t a n g u l a r

a r r a y a [l ..kl , l ..N2 I of s t a t e s , such t h a t

f o r each p o s i t i o n (row,co l) t h e f a c t t h a t

a [k , c o l l = s means j u s t t h a t X I X 2...X, of

pa t te rn PTi with pa r t i t i on value k have been

discovered t o match the t e x t i n pos i t ions a s

shown i n t he following:

Tfrow-u+l ,col-Pir2+1 l...T[row-u+l , c o l I X1
T [r o w - u + Z , ~ o l - P ~ , ~ +1 l...T[row-u+2, c o l] X 2

I f w e h a v e p 2 (s) f e m p t y t h a t means a

comple te p a t t e r n PTi h a s been found a s a

suba r r ay of t h e t e x t a t (row,col) . The

lAPR Workshop Ofl CV - Special Hardware andlndusbial Applications OCT.12-14. 1988. Tokyo

number of pl(1 ,statel) might be more than 1 , three dimensional array, PT[P1 ,P2 ,P3 1, and

but always less than kl. For it to work

correctly at the start of the algorithm, we

initialize a[t,colI=O lzkl , and 1 colN2,
that is each element of array a begins from

start state. ?he Algorithm is shown below:

Algorithn.

Input. A text T[1 ..N1 ,I ..N21 and pattern

matching machines MI and M2 with Goto

function gl and 92, failure function fl and

f2, output function pl and p2.

Output. locations(row,col) at which PTi

occurs in text T.

mf3Kd.

begin

state1 : =O;

for row:=l until N1 do

for col:=l until N2 do

begin

while gl (statel ,T[row,col])=fail

do state1 :=fl (state1);

statel :=gl (statel ,T[rm,col]);

if pl(1 ,statel)#empty

then for all pl(1 ,statel Ifempty do

begin

state2:=a(p1(2,statel) ,col);

c:=pl (1 ,statel) ;

while 92(state2,c)=fail do

state2:=f2(state2);

state2:q2(state2,c);

a(p1(2,state),col):=state2;

if p2 (state2)fempty then

begin

print (row,col)

print (p2(state2))

end

end

end

end.

The running time depends on how often the

rows of the patterns occur in the text. In

average case it is linear to the size of

text T.

4. Ihe extensim of am algorithm.

If P1 ,2=P2, ... =Pk,2 , and P1 =P2, = ...
=PkIl, we consider the set of patterns as a

also text T is a three dimensional array,

T[N1 ,N2 ,N3 I. The theme becomes to find all
occurrences of the pattern PT as embedded

subarraies in the text T. The algorithm is

composed of three matching steps. Both the

time and space requirments of the algorithm

are linear to the size of text T. Naturelly,

wecanalsoextendour algorithm to higher

dimensions.

5.8ncZusicn

In the paper, we have demonstrated that

multiple rectangular pattern arrays of

various sizes and N-dimensional arrays can

be efficiently recognized by using the

method proposed in AC algorithm [41. The

algorithms described here have the following

noteworthy properties:

(1) Both its running time and space

requirement is linearly proportional to the

size of text, which is clearly optimal since

the text have to be read and this needs time

and space equal to the size of the text.

(2) its on-line nature, that is the input

is scanned only once, and after scanning the

characters at any position of the input,

before scanning further, it is possible to
answer yes or no to whether any of the

patterns match at that position.

RE?£erlmces:

[I I R. S. Boyer, and J. S. Moore, A Fast

String Matching Algorithm, Qmm. ACM 20(10),

pp.762-772 (1 977).

[21 D. E. Knuth, J. H. Morris and V. R.

Pratt, Fast Pattern Matching in Strings,

SIAM J. Comput. 6(2), pp.323-350, (1977).

[3 I R. Zhu. and T. Takaoka, On Improving the
Average Case of the Boyer-Moore String

Matching Algorithm, Journal of Information

Processing, Japan, 10(3), (1987).

141 A.V.A.0 and M.J.Corasick, Efficient

string matching: An aid to bibliographic

search, Qmm. ACM 18(6) pp.333-340 (1975).

