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ABSTRACT 
2) Roof edges which indicate a discontinuity in surface nor- 
mal but not in depth. Roof edges could be further classified 

This paper presents a 3-D multiple object reco~nition as either convex or COncave. 
technique using Hough clustering. The objects are modeled 
as polyhedra and the input image is a range image contain- 
ing instances of the modeled objects. The features used for 
matching are surface discontinuity features namely dihedral 
junctions. Qualitative reasoning based on qualitative attrib- 
utes assigned to scene features is shown to be an important 
aspect of the Hough clustering algorithm presented in this 
paper. The resulting algorithm is robust and well suited for 
multiple-object scenes with partial occlusion. 

1. INTRODUCTION 

This paper concerns the problem of 3-D object recogni- 
tion via localization in a multiple-object scene with partial 
occlusion. The previous approaches to object recognition 
via localization based on the Hough (Pose) clustering ap- 
proach[l] or the Interpretation Tree ( I.T.) approach[2,3] 
concentrated mainly on a single-object scene. The I.T. ap- 
proach has been generalised by Grimson[4] to deal with 
multiple-object scenes but with a loss in performance. 
Straightforward application of the Hough clustering tech- 
nique to a multiple-object scene leads to generation of sev- 
eral spurious hypotheses which make accurate identification 
and localization difficult. In this paper we present a robust 
Hough clustering technique for 3-D object recognition in a 
multiple-object scene. Qualitative reasoning based on 
qualitative attributes assigned to scene features is shown to 
be an important aspect of this technique. Qualitative rea- 
soning greatly reduces the number of spurious hypotheses 
generated and tested by providing a means for (i) intelligent 
use of geometric constraints and (ii) effective means of 
scheduling pose hypotheses for verification. The use of 
qualitative reasoning shows how both, efficiency and ro- 
bustness can be incorporated in the Hough clustering algo- 
rithm. 

2. HOUGH CLUSTERING ALGORITHM 

The input images are range images of typical 3-D poly- 
hedral objects such as cube, square pyramid and hexago- 
nal cylinder. The objects are allowed to have six degrees of 
freedom. The range images contain multiple objects with 
partial occlusion. The process proceeds by extracting primi- 
tive geometric features from the scene in the form of dihe- 
dral junctions (junctions with a single vertex and two incident 
edges). Each match of a scene feature with a model fea- 
ture yields a geometric transform which can be represented 
as a point in the six-dimensional Hough space. Subsequent 
clustering in Hough space generates hypotheses regarding 
the identity and pose of the object. The technique de- 
scribed in this paper proceeds iteratively by recognizing 
each object in turn, verifying the identity and pose of each 
object and recomputing the clusters in Hough space until all 
the objects in the scene have been identified and verified. 

2.1 FEATURE EXTRACTION 

Since the modeled objects were polyhedra, there were 
two edge types to be considered. :- 
1) Step ednes which indicate a discontinuitv in depth. 

Step edges were first detected using 1 x 3 and 3 x 1 
gradient operators in both the x and y directions respec- 
tively. The roof edges were detected using a 3 x 3 Laplacian 
operator or a 5 x 5 Laplacian operator with averaging. The 
response of the step edges to the Laplacian operator was 
selectively suppressed since they were already detected 
and localized. The roof edges were further classified as 
convex corresponding to the positive maxima in the output 
of the Laplacian operator or concave correspondin~ to the 
negative maxima. The edges were thinned using an asyn- 
chronous thining algorithm based on pixel connectivity. 

Linear boundaries were extracted from edge points using 
the 2-D Hough transform . Although the lines were 3-di- 
mensional, the line detection was done in 2-D Hough space 
using a two dimensional (r, 0) accumulator. The straightfor- 
ward technique of choosing all cells in the Hough accumula- 
tor whose values exceed a certain threshold was not suc- 
cessful since the peaks in the Hough space cover several 
cells and they overlap resulting in several extracted lines for 
a single peak. Instead an iterative histogramming technique 
was employed. The Hough transform was recomputed as 
each line was extracted from the image using an edge 
tracking algorithm. As each line was extracted from the im- 
age using the edge tracking algorithm, the pixels belonging 
to that line were labeled. The response of these pixels in 
successive computations of the Hough transform were se- 
lectively suppressed. The output of the boundary of the 
boundary extraction process was a list of boundary tokens. 
Each boundary token was represented by a data structure 
which gave the boundary label, edge type (step, convex 
roof or concave roof) and the x, y and z coordinates of the 
two endpoints of the boundary. 

Although the basic line segments forming the boundaries 
of the objects were detected at this stage, further post- 
processing was necessary to fill the gaps in the boundary 
segments and form junction points. The output of the post- 
processing stage was a list of junction tokens. Furthermore 
if a boundary segment terminated at a T type junction then 
the boundary segment was further classified as occluded. 
Since T type junctions are highly viewpoint and scene de- 
pendent, they were not considered for matching. Each 
scene junction is assigned a degree which equals the num- 
ber of edges which belong to the junction. Scene junctions 
of degree greater than 2 are decomposed into dihedral 
junctions. 

The scene coordinate system attached to the display 
monitor was such that the positive direction of the z-axis 
pointed into the screen. This implied that all visible faces 
had outward surface normals with a negative z-component. 
Keeping this in mind, edges of a dihedral junction were so 
ordered that the vector cross product of the unit vector in 
the direction of the first edge with the unit vector in the di- 
rection of the second edge was in the direction of the out- 
ward surface normal. Face visibility was an important quali- 
tative property used to constrain the matching process in 
Section 2.3. 
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2.2 FEATURE MATCHING 

The dihedral junctions extracted from the range image 
were matched against dihedral junctions in the object 
model. Fig. 1 shows a candidate scene junction to be 
matched against a model junction. The match between the 
candidate scene and model junctions was subjected to a 
series of tests based on local geometric constraints guided 
by qualitative attributes assigned to scene boundaries. The 
result of the series of tests was a heuristic match quality 
assigned to the match or a rejection of the match. The se- 
ries of tests applied to the candidate scene and model junc- 
tion pair are as follows :- 

Angle Constraint :- 

where Omax is the maximum allowed deviation in angle 

and K l  is a constant. 0, and 6, are the angles enclosed 
by the scene and model junctions respectively (Fig. 1). If 

Me is c 0 then the match is rejected else the match quality 

is incremented by MS . 
Length Constraint :- 

If the edge is not then: 

where L,., is the maximum allowed deviation in length 

and K2 is a constant. L, and L, are the lengths of the 

model and scene edges respectively. If MI < 0 then the 

match is rejected else it is incremented by MI. 

If the edge is occluded and if L, < L, then : 

If L, < L, the match is incremented by MI else the 
match is rejected. 

2.3 VIEWPOINT DETERMINATION 

For a successful match between a scene feature and a 
model feature the viewpoint parameters were computed as 
described in the remainder of this section. The description 
is given in homogeneous coordinate systems and transfor- 
mations. The coordinates (x, y, z) refer to the model coor- 
dinate system and the (u, v, w) to the scene coordinate 
system. The operations @ and . denote the vector 
cross product and the vector scalar product respectively. 

With reference to Fig. 1. let ml be the unit vector in the 
direction BA and let m2 be the unit vector in the direction 

BC. Similarly let s l  be the unit vector in the direction ED 

and s2 be the unit vector in the direction EF. The homoge- 
neous coordinates of B in model coordinate system is given 

by the column vector [XQ, yo, 20. 1IT and the homogeneous 
coordinates of E in the scene coordinate system are given 

by the column vector [uo, vo, wo, 11' . The goal is to find a 
transformation T such that : 

T [xo, YO. 20, 1IT = [UO. v0. WQ, 1IT ... (2.3.1) 

There is an inherent ambiguity in the matching of the 
junctions as shown in Fig. 1. in the sense that whether ml 

should match SI and mz should match s2 or vice versa. 

The directions of the outward normals n, and n m  to the 
faces bound by the corresponding scene and model junc- 
tions, were used to resolve the ambiguity. In Fig. 1. since 

n, = ml 8 m2 and nm =s l  €4 sz , ml should match 

s~ and mz should match s2 . 
The transformation T was determined in a stepwise 

manner as outlined below:- 

(1) Points B and E are translated to their respective origins. 
Let TRANS(-B ) and TRANS(-E ) denote the respective 
homogeneous transformation. This ensures that both junc- 
tions have their vertices translated to the origin. 

(2) The vectors ml and rn2 are rotated about an 

axis k = ( kx. k,. k, ) ( where k is the unit vector in the 

direction of the axis ) by a scalar magnitude of rotation . 
The corresponding homogeneous transformation is denoted 

by ROT( k , ) .  ROT( k, ) aligns rn, with SI and m2 

with s2 . The values of k and 0 are computed as follows : 

sin 0 = [(k 8 ~ 1 )  mil ...( 2.3.4) 
[ I -  ( k - m ~ ) ( k * s l ) l  

3) The final transformation can be thus written as : 

ROT( k , ) TRANS(-B) [xo, yo, 20, 1IT = 

TRANS(-E) [uo, vo. wo. 11' ...( 2.3.5) 

From (2.3.1) and (2.3.5) 

T=TRANS-I(-E)ROT(k.e)TRANS(-B) ... (2.3.6) 
The transformation T from the model coordinate system to 
the scene coordinate system could be thus be written as: 

T = ROT(k, 0 ) TRANS( t,, t,, t. ) = 

where 

r l l  = k: ( 1 - cost9 ) + 
r12 = kx ky ( 1 - cos 0 ) 
r13 = k, k, ( 1-cos0 ) 
r21 = kx ky ( l - c o s e )  
r22 = k: ( 1-COSO ) + 
rz3 = ky k, ( I - cos 0 ) 
r,] = k, k, ( 1 - cos 0 ) 
r32 = ky k, ( 1 - COS e ) 
r33 = k2 ( 1 - cos 0 ) + 

cos e 
- k, sin0 

+ k, sin0 
+ k, sine 

cos e 
- k, sin0 

- k, sin0 

+ k, sine 

cos e 

and 
t~ =Uo - ~ I X Q  - -12~0 - rl3zo 

t~ = vo - rzlxo - r ~ z y o  - r2320 

t~ = W O  - r31x0 - r32yo - r3.320 ... (2.3.9) 
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Thus the transform T is uniquely specified by the 6-tuple 
( txs ty* tz, kx, kz, 8 ) 

2.4 HOUGH CLUSTERING 

There are two principal approaches to the implementa- 
tion of the generalized k-dimensional Hough transform. (i) 
Using a k-dimensional accumulator array and (ii) Clustering 
k-dimensional feature vectors in Hough space using dispar- 
ity matrices. The latter approach was chosen in this experi- 
ment for the following reasons : 

(i) Implementation a k-dimensional accumulator array for k 
= 6 was not practical in terms of memory requirement. 

(ii) Choosing an optimum quantization of the accumulator 
array was not an easy problem. Fine quantization would 
lead to the scattering of the peaks among several cells 
whereas coarse quantization caused a loss in accuracy. 

In this experiment a disparity matrix was described for 
each object model. An element D( i, j ) of the disparity 
matrix represents a match between the scene feature i and 
the model feature j. D( i, j ) equals the geometric transform 

( tx* ~ Y S  t r .  kx. k=. 8 ) if the match is successful and 
NIL otherwise. Since we require that each cluster in the 
Hough space correspond to the occurrence of a w- 

from a vie-, the following constraints were 
imposed during the clustering process :- 

(i) In a given cluster no scene feature should match more 
than one model feature. Conflicting matches of a scene 
feature to more than one model feature are assigned to 
different clusters. 

(il) In a given cluster no model feature should match more 
than one scene feature. Conflicting matches of a model 
feature to more than one scene feature are assigned to 
different clusters. 

In terms of disparity matrices, given two elements D(i, j) 
and D( m, n ) of a single disparity matrix, if either i = m or j 
= n, the two elements represent conflicting matches in 
terms of the two constraints described above. It would have 
been difficult to impose these constraints using an accumu- 
lator array. 

In order to initiate the clustering process, the initial 
seeds were chosen as follows : 

(i) A location ( i, j ) in the disparity matrix where the match 
quality was a maximum was chosen as a cluster seed. 

(ii) Locations (non-NIL) in row i and j were chosen as 
cluster seeds since they are in conflict with the cluster seed 
chosen in (i). 

The clustering process was based on the k-means clus- 
tering algorithm where the initial cluster seeds were chosen 
as the initial values for the k-means. The clustering was 
done in the 6-dimensional 

( txt tyP t.9 kz, 0 )space. At the end of the cluster- 
ing process, each cluster mean represents a geometric 
transform or a pose hypothesis. Each pose hypothesis was 
also assigned a match quality which was the aggregate of 
the individual match quality measures of the cluster mem- 
bers. 

2.5 POSE VERIFICATION 

The output of the clustering process is a set of pose hy- 
potheses to be further verified, Instead of verification by di- 
rect depth comparison as proposed by earlier researchers. 
verification bv feature comparison was resorted to. Verifica- 

tion by direct depth comparison was found to be highly un- 
reliable since slight errors in pose computation resulted in 
large errors in depth comparison. 

The verification process could be described in a step- 
wise manner as described below :- 

I )  The pose hypotheses are ordered by an ordering func- 

tion 0 = K, (dm,. - t.) + M where dm., is the depth 
of the background, M is the quality of the of the hypothesis 

and K, is a constant. The ordering function ensures that the 
hypothesis with the least number of occluded features and 
the least depth (corresponding to the topmost object ) is 
selected first for verification. The qualitative attribute based 
on occlusion assigned to scene features made such an or- 
dering function possible. 

2) For the selected pose hypothesis the corresponding ob- 
ject model is projected onto the scene. A three- 
dimensional window is defined around, the projection. The 
window serves as a crude filter. If the number of unlabeled 
scene features in the window is less than a predefined 
threshold the hypothesis is rejected. 

3) For hypotheses that pass stage 2) a more detailed com- 
parison based on feature matching is carried out. Each pro- 
jected model feature is matched to a scene feature within 
the window. Based on the proximity of junction points and 
the difference in angle, boundary length and boundary ori- 
entation, a match quality is defined for each match. The 
equations for the computation of the match quality are simi- 
lar to the equations (2.3.1) and (2.3.2). An optimal global 
match quality is computed for the individual matches by 
treating the problem as an assignment problem for which 
polynomial-time algorithms such as the Hungarian Marriage 
algorithm are known to exist. A variant of the Hungarian 
Marriage algorithm was used In the experiment. If the 
global match quality exceeded a threshold, the hypothesis 
is accepted else rejected. 

4) For a hypothesis which is accepted, the corresponding 
scene features are labeled as belonging to that particular 
object model. These scene features are removed from fur- 
ther consideration. 

5) The remaining features are reclustered and steps 1) to 
4) are carried out until all the scene features are labeled. 

2.6 ROLE OF QUALITATIVE REASONING 

Qualitative reasoning had an important role to play in the 
Hough Clustering process. Qualitative attributes assigned to 
scene features proved useful in the following situations :- 
I )  The qualitative property based on occlusion was used to 
selectively adjust the stringency of the geometric con- 
straints. For unoccluded scene boundaries, a tighter geo- 
metric bound based on length equality was placed on the 
match (equation (2.2.2)) whereas for unoccluded scene 
boundaries a looser geometric bound based on length in- 
equality was placed on the match (equation (2.2.3)). The 
appropriate selection of constants ensured that matches 
based on unoccluded features had a higher match quality 
assigned to them as compared to the matches based on 
occluded features. 
2) The edge type (roof or step) was used to infer visibility of 
the face bound by the scene edges. Face visibility and the 
implied direction of the outward surface normal was used to 
resolve a potential ambfguity in the feature matching and 
viewpoint determination process as was seen in Section 
2.3. 
3) The qualitative attribute based on occlusion provided cri- 
teria for scheduling pose hypotheses for verification. Hy- 
potheses with a fewer number of occluded features were 



IAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14. 1988, Tokyo 

given higher priority over those with a greater number of 
occluded features. The scheduling function ensured that a 
fewer number of hypotheses were tested for verification. 
The conventional Hough clustering algorithm has no such 
provision. 

The effect of qualitative reasoning on performance of the 
Hough clustering algorithm was experimentally verified. The 
experimental results are discussed in the following section. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

A comparative analysis of the Hough clustering tech- 
nique both with and without qualitative reasoning was made 
by means of an experiment. The object models were CADI 
CAM wireframe models of simple polyhedra such as cube, 
square pyramid and hexagonal cylinder. The range data 
was simulated using a z-buffer algorithm. Two candidate 
scenes were analyzed. The first set of experiments used 
the Hough clustering algorithm with qualitative reasoning 
whereas in the second set of experiments the qualitative 
attribute based on occlusion was neglected. Thus the geo- 
metric constraint based on length equality in equation 
(2.3.2) was replaced by the weaker constraint based on 
length inequality (2.3.3). The ordering function for schedul- 
ing hypotheses was suitably altered since the criteria based 
on the number of occluded features could no longer be 
used. The qualitative attribute based on surface visibility 
was also neglected leading to two potential matches for the 
scene and model junction pairs. The effect of the absence 
of qualitative reasoning was analyzed in terms of two meas- 
ures (i) average number of hypotheses aenerated for md3 
object in the scene which is denoted by measure 
MI and (ii) average number of hypotheses &s&d for & 
object in the scene denoted by measure M2 . Fig- 
ures 6 through 17 show the original range image, output of 
the edge extraction routines, output of the post-processing 
routines and the reconstructed scene after recognition and 
localization for the two candidate scenes that were consid- 
ered in the experiment. Table I. summarizes the experi- 
mental results for the Hough clustering technique with quali- 
tative reasoning and Table II. summarizes the the experi- 
mental results for the Hough clustering technique without 
qualitative reasoning. 

4. CONCLUSIONS 

In this paper we have presented a robust and efficient 
Hough clustering algorithm well suited for 3-D object rec- 
ognition and localization in multiple-object scenses with 
partial occlusion. The conventional techniques for recogni- 
tion via localization such as Hough clustering or pruning of 
the lnterpretation Tree are based on propagation of geo- 
metric constraints through local matches of geometric fea- 
tures. These algorithms perform poorly in multiple-object 
scenes with partial occlusion. Our algorithm which uses 
qualitative reasoning along with Hough clustering shows how 
qualitative reasoning can provide a means for (i) intelligent 
and selective use of geometric constraints and (ii) schedul- 
ing pose hypotheses for verification. Our experimental re- 
sults show how qualitative reasoning when used in conjunc- 
tion with techniques such as Hough clustering which rely 
mainly on propagation of geometric constraints could lead 
to greater efficiency and robustness. An important fact to 
be noted is that since the features used were primitive, the 
qualitative attributes used were fairly simple, yet effective. 
These qualitative attributes did not require extensive 
preprocessing of the image data as would be needed for a 
higher semantic-level description of the scene. This paper 
shows that qualitative reasoning has an important role to 
play within the recognition via localization approach to ob- 
ject recognition. 
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